EXERCISE 7.1

1. Which of the following numbers are not perfect cubes?
(i) 216

Solution:

By resolving 216 into a prime factor,

2	216
2	108
2	54
3	27
3	9
3	3
	1

$216=2 \times 2 \times 2 \times 3 \times 3 \times 3$
By grouping the factors in triplets of equal factors, $216=(2 \times 2 \times 2) \times(3 \times 3 \times 3)$
Here, 216 can be grouped into triplets of equal factors,
$\therefore 216=(2 \times 3)=6$
Hence, 216 is the cube of 6 .
(ii) 128

Solution:
By resolving 128 into a prime factor,

2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

$128=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
By grouping the factors in triplets of equal factors, $128=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times 2$
Here, 128 cannot be grouped into triplets of equal factors, and we are left with one factor: 2.
$\therefore 128$ is not a perfect cube.
(iii) $\mathbf{1 0 0 0}$

Solution:

By resolving 1000 into prime factor,

2	1000
2	500
2	250
5	125
5	25
5	5
	1

$1000=2 \times 2 \times 2 \times 5 \times 5 \times 5$
By grouping the factors in triplets of equal factors, $1000=(2 \times 2 \times 2) \times(5 \times 5 \times 5)$
Here, 1000 can be grouped into triplets of equal factors.
$\therefore 1000=(2 \times 5)=10$
Hence, 1000 is the cube of 10 .
(iv) $\mathbf{1 0 0}$

Solution:
By resolving 100 into a prime factor,

2	100
2	50
5	25
5	5
	1

$100=2 \times 2 \times 5 \times 5$
Here, 100 cannot be grouped into triplets of equal factors.
$\therefore 100$ is not a perfect cube.
(v) 46656

Solution:

By resolving 46656 into prime factor,

2	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

$46656=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$

By grouping the factors in triplets of equal factors, $46656=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(3 \times 3 \times 3) \times(3 \times 3 \times 3)$
Here, 46656 can be grouped into triplets of equal factors,
$\therefore 46656=(2 \times 2 \times 3 \times 3)=36$
Hence, 46656 is the cube of 36 .
2. Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube.
(i) $\mathbf{2 4 3}$

Solution:

By resolving 243 into a prime factor,

3	243
3	81
3	27
3	9
3	3
	1

$243=3 \times 3 \times 3 \times 3 \times 3$
By grouping the factors in triplets of equal factors, $243=(3 \times 3 \times 3) \times 3 \times 3$
Here, 3 cannot be grouped into triplets of equal factors.
\therefore We will multiply 243 by 3 to get the perfect cube.
(ii) 256

Solution:

By resolving 256 into a prime factor,

2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

$256=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
By grouping the factors in triplets of equal factors, $256=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times 2 \times 2$
Here, 2 cannot be grouped into triplets of equal factors.
\therefore We will multiply 256 by 2 to get the perfect cube.
(iii) 72

Solution:
By resolving 72 into a prime factor,

2	72
2	36
2	18
3	9
3	3
	1

$72=2 \times 2 \times 2 \times 3 \times 3$
By grouping the factors in triplets of equal factors, $72=(2 \times 2 \times 2) \times 3 \times 3$
Here, 3 cannot be grouped into triplets of equal factors.
\therefore We will multiply 72 by 3 to get the perfect cube.
(iv) 675

Solution:
By resolving 675 into a prime factor,

$675=3 \times 3 \times 3 \times 5 \times 5$

By grouping the factors in triplets of equal factors, $675=(3 \times 3 \times 3) \times 5 \times 5$
Here, 5 cannot be grouped into triplets of equal factors.
\therefore We will multiply 675 by 5 to get the perfect cube.
(v) 100

Solution:

By resolving 100 into a prime factor,

2	100
2	50
5	25
5	5
	1

$100=2 \times 2 \times 5 \times 5$
Here, 2 and 5 cannot be grouped into triplets of equal factors.
\therefore We will multiply 100 by $(2 \times 5) 10$ to get the perfect cube.
3. Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube.
(i) 81

Solution:

By resolving 81 into a prime factor,

3	81
3	27
3	9
3	3
	1

$81=3 \times 3 \times 3 \times 3$
By grouping the factors in triplets of equal factors, $81=(3 \times 3 \times 3) \times 3$
Here, 3 cannot be grouped into triplets of equal factors.
\therefore We will divide 81 by 3 to get the perfect cube.
(ii) 128

Solution:

By resolving 128 into a prime factor,

2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

$$
128=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2
$$

By grouping the factors in triplets of equal factors, $128=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times 2$
Here, 2 cannot be grouped into triplets of equal factors.
\therefore We will divide 128 by 2 to get the perfect cube.
(iii) 135

Solution:

By resolving 135 into prime factor,

$135=3 \times 3 \times 3 \times 5$
By grouping the factors in triplets of equal factors, $135=(3 \times 3 \times 3) \times 5$
Here, 5 cannot be grouped into triplets of equal factors.
\therefore We will divide 135 by 5 to get the perfect cube.
(iv) 192

Solution:
By resolving 192 into a prime factor,

2	192
2	96
2	48
2	24
2	12
2	6
3	3
	1

$192=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$

By grouping the factors in triplets of equal factors, $192=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times 3$
Here, 3 cannot be grouped into triplets of equal factors.
\therefore We will divide 192 by 3 to get the perfect cube.
(v) 704

Solution:

By resolving 704 into a prime factor,

2	704
2	352
2	176
2	88
2	44
2	22
11	11
	1

$704=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 11$

By grouping the factors in triplets of equal factors, $704=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times 11$
Here, 11 cannot be grouped into triplets of equal factors.
\therefore We will divide 704 by 11 to get the perfect cube.
4. Parikshit makes a cuboid of plasticine with sides $5 \mathrm{~cm}, 2 \mathrm{~cm}$, and 5 cm . How many such cuboids will he need to form a cube?

Solution:

Given the sides of the cube are $5 \mathrm{~cm}, 2 \mathrm{~cm}$ and 5 cm .
\therefore Volume of cube $=5 \times 2 \times 5=50$

2	50
5	25
5	5
	1

$50=2 \times 5 \times 5$
Here, 2,5 and 5 cannot be grouped into triplets of equal factors.
\therefore We will multiply 50 by $(2 \times 2 \times 5) 20$ to get the perfect cube. Hence, 20 cuboids are needed.

EXERCISE 7.2

1. Find the cube root of each of the following numbers by the prime factorisation method.
(i) 64

Solution:

$64=2 \times 2 \times 2 \times 2 \times 2 \times 2$
By grouping the factors in triplets of equal factors, $64=(2 \times 2 \times 2) \times(2 \times 2 \times 2)$
Here, 64 can be grouped into triplets of equal factors.
$\therefore 64=2 \times 2=4$
Hence, 4 is the cube root of 64 .
(ii) $\mathbf{5 1 2}$

Solution:

$512=2 \times 2 \times 2$
By grouping the factors in triplets of equal factors, $512=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(2 \times 2 \times 2)$
Here, 512 can be grouped into triplets of equal factors.
$\therefore 512=2 \times 2 \times 2=8$
Hence, 8 is the cube root of 512 .
(iii) 10648

Solution:

$10648=2 \times 2 \times 2 \times 11 \times 11 \times 11$
By grouping the factors in triplets of equal factors, $10648=(2 \times 2 \times 2) \times(11 \times 11 \times 11)$
Here, 10648 can be grouped into triplets of equal factors.
$\therefore 10648=2 \times 11=22$
Hence, 22 is the cube root of 10648 .
(iv) $\mathbf{2 7 0 0 0}$

Solution:
$27000=2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5$

By grouping the factors in triplets of equal factors, $27000=(2 \times 2 \times 2) \times(3 \times 3 \times 3) \times(5 \times 5 \times 5)$
Here, 27000 can be grouped into triplets of equal factors.
$\therefore 27000=(2 \times 3 \times 5)=30$
Hence, 30 is the cube root of 27000.
(v) 15625

Solution:

$15625=5 \times 5 \times 5 \times 5 \times 5 \times 5$
By grouping the factors in triplets of equal factors, $15625=(5 \times 5 \times 5) \times(5 \times 5 \times 5)$
Here, 15625 can be grouped into triplets of equal factors.
$\therefore 15625=(5 \times 5)=25$
Hence, 25 is the cube root of 15625.
(vi) 13824

Solution:

$13824=2 \times 2 \times 3 \times 3 \times 3$
By grouping the factors in triplets of equal factors,
$13824=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(3 \times 3 \times 3)$
Here, 13824 can be grouped into triplets of equal factors.
$\therefore 13824=(2 \times 2 \times 2 \times 3)=24$
Hence, 24 is the cube root of 13824.
(vii) 110592

Solution:

$110592=2 \times 2 \times 3 \times 3 \times 3$
By grouping the factors in triplets of equal factors,
$110592=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(3 \times 3 \times 3)$
Here, 110592 can be grouped into triplets of equal factors.
$\therefore 110592=(2 \times 2 \times 2 \times 2 \times 3)=48$
Hence, 48 is the cube root of 110592 .
(viii) 46656

Solution:

$46656=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$
By grouping the factors in triplets of equal factors,
$46656=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(3 \times 3 \times 3) \times(3 \times 3 \times 3)$
Here, 46656 can be grouped into triplets of equal factors.
$\therefore 46656=(2 \times 2 \times 3 \times 3)=36$
Hence, 36 is the cube root of 46656 .
(ix) 175616

Solution:

$175616=2 \times 2 \times 7 \times 7 \times 7$
By grouping the factors in triplets of equal factors,
$175616=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(7 \times 7 \times 7)$
Here, 175616 can be grouped into triplets of equal factors.
$\therefore 175616=(2 \times 2 \times 2 \times 7)=56$
Hence, 56 is the cube root of 175616 .
(x) 91125

Solution:

$91125=3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5$
By grouping the factors in triplets of equal factors, $91125=(3 \times 3 \times 3) \times(3 \times 3 \times 3) \times(5 \times 5 \times 5)$
Here, 91125 can be grouped into triplets of equal factors.
$\therefore 91125=(3 \times 3 \times 5)=45$
Hence, 45 is the cube root of 91125 .
2. State true or false.
(i) Cube of any odd number is even.

Solution:

False
(ii) A perfect cube does not end with two zeros.

Solution:

True
(iii) If the cube of a number ends with 5 , then its cube ends with 25.

Solution:

False
(iv) There is no perfect cube which ends with 8.

Solution:
False
(v) The cube of a two-digit number may be a three-digit number.

Solution:

False
(vi) The cube of a two-digit number may have seven or more digits.

Solution:

False
(vii) The cube of a single-digit number may be a single-digit number.

Solution:

True
3. You are told that 1,331 is a perfect cube. Can you guess without factorisation what its cube root is? Similarly, guess the cube roots of 4913, 12167, and 32768.

Solution:
(i) By grouping the digits, we get 1 and 331

We know that since the unit digit of the cube is 1 , the unit digit of the cube root is 1 .
\therefore We get 1 as the unit digit of the cube root of 1331 .
The cube of 1 matches the number of the second group.
\therefore The ten's digit of our cube root is taken as the unit place of the smallest number.
We know that the unit's digit of the cube of a number having digit as unit's place 1 is 1 .
$\therefore \sqrt[3]{1331}=11$
(ii) By grouping the digits, we get 4 and 913

We know that since the unit digit of the cube is 3 , the unit digit of the cube root is 7 .
\therefore we get 7 as the unit digit of the cube root of 4913 . We know $1^{3}=1$ and $2^{3}=8,1>4>8$
Thus, 1 is taken as the tens digit of the cube root.
$\therefore \sqrt[3]{4913}=17$
(iii) By grouping the digits, we get 12 and 167 .

We know that since the unit digit of the cube is 7 , the unit digit of the cube root is 3 .
$\therefore 3$ is the unit digit of the cube root of 12167 We know $2^{3}=8$ and $3^{3}=27,8>12>27$
Thus, 2 is taken as the tens digit of the cube root.
$\therefore \sqrt[3]{12167}=23$
(iv) By grouping the digits, we get 32 and 768 .

We know that since the unit digit of the cube is 8 , the unit digit of the cube root is 2 .
$\therefore 2$ is the unit digit of the cube root of 32768 . We know $3^{3}=27$ and $4^{3}=64,27>32>64$
Thus, 3 is taken as the tens digit of the cube root.
$\therefore \sqrt[3]{32768}=32$

