

NCERT Solutions for Class 8 Maths Chapter 9 – Algebraic Expressions and Identities

EXERCISE 9.2

PAGE NO: 143

1. Find the product of the following pairs of monomials.

(i) 4, 7p

(ii) - 4p, 7p

(iii) - 4p, 7pq

(iv) 4p³, - 3p

(v) 4p, 0

Solution:

- (i) 4 , 7 p = $4\times7\times p=28p$
- (ii) $-\,4p\times7p$ = (-4 $\times\,7$) \times (p $\times\,p$)= -28p^{_2}
- (iii) $-\,4p\times7pq$ =(-4 $\times\,7$) (p $\times\,pq)$ = $\,-28p^{\scriptscriptstyle 2}q$
- (iv) $4p^3 \times -3p = (4 \times -3) (p^3 \times p) = -12p^4$
- (v) $4p \times 0 = 0$

2. Find the areas of rectangles with the following pairs of monomials as their lengths and breadths, respectively.

(p, q); (10m, 5n); $(20x^2, 5y^2)$; $(4x, 3x^2)$; (3mn, 4np)

Solution:

Area of rectangle = Length x breadth. So, it is multiplication of two monomials.

The results can be written in square units.

- (*i*) $p \times q = pq$
- $(ii)10m \times 5n = 50mn$
- (*iii*) $20x^2 \times 5y^2 = 100x^2y^2$
- $(iv) \ 4x \times 3x^2 = 12x^3$
- $(v) \ 3mn \times \ 4np = 12mn^2p$
- 3. Complete the following table of products:

NCERT Solutions for Class 8 Maths Chapter 9 – Algebraic Expressions and Identities

$\frac{\text{First monomial} \rightarrow}{\text{Second monomial}}$	2 <i>x</i>	-5y	3 <i>x</i> ²	- 4xy	7 <i>x</i> ² y	$-9x^2y^2$
2 <i>x</i>	4 <i>x</i> ²	0.444		1	#12	1275
-5y	1922	ien.	$-15x^{2}y$	2115	115	2222
3x ²	1.000	1.444	144	1.12444	+++(
- 4 <i>xy</i>	100	2.000	2.000		7492) 2492	
$7x^2y$	1077	370	977	SW.		1772)
$-9x^2y^2$	sm.					

Solution:

First monomial	2x	-5γ	3x ²	-4xY	7x ² Y	-9x ² y ²
Second monomial				741		54.4
2x	4x ²	-10xy	6x ³	-8x²y	14x ³ y	-18x ³ y ²
-5y	-10xy	25y ²	-15x²y	20xy ²	-35x ² y ²	45x ² y ³
3x ²	6x ³	-15x²y	9x ⁴	-12x ³ y	21x⁴y	-27x4y2
-4xy	-8x²y	20xy ²	-12x ³ y	16x ² y ²	-28x ³ y ²	36x ³ y ³
7x²y	14x ³ y	-35x ² y ²	21x⁴y	-28x ³ y ²	49x ⁴ y ²	-63x ⁴ y ³
-9x ² y ²	-18x ³ y ²	45x ² y ³	-27 x ⁴ y ²	36x ³ y ³	-63x ⁴ y ³	81x4y4

4. Obtain the volume of rectangular boxes with the following length, breadth and height, respectively.

(i) 5a, $3a^2$, $7a^4$

(ii) 2p, 4q, 8r

(iii) *xy*, $2x^2y$, $2xy^2$

(iv) *a*, 2*b*, 3*c*

Solution:

Volume of rectangle = length x breadth x height. To evaluate volume of rectangular boxes, multiply all the monomials.

(*i*)
$$5a \ge 3a^2 \ge 7a^4 = (5 \times 3 \times 7) (a \times a^2 \times a^4) = 105a^7$$

(*ii*) $2p \ge 4q \ge 8r = (2 \times 4 \times 8) (p \times q \times r) = 64pqr$
(*iii*) $y \times 2x^2y \times 2xy^2 = (1 \times 2 \times 2)(x \times x^2 \times x \times y \times y \times y^2) = 4x^4y^4$

(*iv*) $a \ge 2b \ge 3c = (1 \times 2 \times 3) (a \times b \times c) = 6abc$

https://byjus.com

NCERT Solutions for Class 8 Maths Chapter 9 – Algebraic Expressions and Identities

5. Obtain the product of

- (i) xy, yz, zx
- (ii) $a_{1} a^{2}$, a^{3}
- (iii) 2, 4y, 8y², 16y³
- (iv) a, 2b, 3c, 6abc
- (v) m, mn, mnp

Solution:

- (i) $xy \times yz \times zx = x^2 y^2 z^2$
- (ii) $a \times a^2 \times a^3 = -a^6$
- (iii) $2 \times 4y \times 8y^2 \times 16y^3 = 1024 y^6$
- (iv) $a \times 2b \times 3c \times 6abc = 36a^2b^2c^2$
- (v) $m \times -mn \times mnp = -m^3 n^2 p$