## EXERCISE 9.2

1. Find the product of the following pairs of monomials.
(i) $4,7 \mathrm{p}$
(ii) $-4 \mathrm{p}, 7 \mathrm{p}$
(iii) $-4 \mathrm{p}, 7 \mathrm{pq}$
(iv) $4 \mathrm{p}^{3},-3 \mathrm{p}$
(v) $4 \mathrm{p}, 0$

Solution:
(i) $4,7 \mathrm{p}=4 \times 7 \times \mathrm{p}=28 \mathrm{p}$
(ii) $-4 \mathrm{p} \times 7 \mathrm{p}=(-4 \times 7) \times(\mathrm{p} \times \mathrm{p})=-28 \mathrm{p}^{2}$
(iii) $-4 \mathrm{p} \times 7 \mathrm{pq}=(-4 \times 7)(\mathrm{p} \times \mathrm{pq})=-28 \mathrm{p}^{2} \mathrm{q}$
(iv) $4 \mathrm{p}^{3} \times-3 \mathrm{p}=(4 \times-3)\left(\mathrm{p}^{3} \times \mathrm{p}\right)=-12 \mathrm{p}^{4}$
(v) $4 \mathrm{p} \times 0=0$
2. Find the areas of rectangles with the following pairs of monomials as their lengths and breadths, respectively.
$(p, q) ;(10 m, 5 n) ;\left(20 x^{2}, 5 y^{2}\right) ;\left(4 x, 3 x^{2}\right) ;(3 m n, 4 n p)$

## Solution:

Area of rectangle $=$ Length $x$ breadth. So, it is multiplication of two monomials.
The results can be written in square units.
(i) $p \times q=p q$
(ii) $10 \mathrm{~m} \times 5 \mathrm{n}=50 \mathrm{mn}$
(iii) $20 x^{2} \times 5 y^{2}=100 x^{2} y^{2}$
(iv) $4 x \times 3 x^{2}=12 x^{3}$
(v) $3 m n \times 4 n p=12 m n^{2} p$
3. Complete the following table of products:

| First monomial $\rightarrow$ <br> Second monomial $\downarrow$ | $2 x$ | $-5 y$ | $3 x^{2}$ | $-4 x y$ | $7 x^{2} y$ | $-9 x^{2} y^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 x$ | $4 x^{2}$ |  |  | $\ldots$ |  |  |
| $-5 y$ | $\ldots$ | $\ldots$ | $-15 x^{2} y$ | $\cdots$ | $\ldots$ |  |
| $3 x^{2}$ | $\ldots$ | $\ldots$ | $\ldots$ | $\cdots$ |  |  |
| $-4 x y$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |  |  |
| $7 x^{2} y$ | $\ldots$ | $\ldots$ | $\ldots$ | $\cdots$ | $\ldots$ |  |
| $-9 x^{2} y^{2}$ | $\ldots$ | $\ldots$ | $\ldots$ | $\cdots$ | $\ldots$ | $\cdots$ |

## Solution:

| First monomial | $2 x$ | $-5 y$ | $3 x^{2}$ | $-4 x y$ | $7 x^{2} y$ | $-9 x^{2} y^{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Second <br> monomial | $2 x$ |  |  |  |  |  |
| $2 x$ | $4 x^{2}$ | $-10 x y$ | $6 x^{3}$ | $-8 x^{2} y$ | $14 x^{3} y$ | $-18 x^{3} y^{2}$ |
| $-5 y$ | $-10 x y$ | $25 y^{2}$ | $-15 x^{2} y$ | $20 x y^{2}$ | $-35 x^{2} y^{2}$ | $45 x^{2} y^{3}$ |
| $3 x^{2}$ | $6 x^{3}$ | $-15 x^{2} y$ | $9 x^{4}$ | $-12 x^{3} y$ | $21 x^{4} y$ | $-27 x^{4} y^{2}$ |
| $-4 x y$ | $-8 x^{2} y$ | $20 x y^{2}$ | $-12 x^{3} y$ | $16 x^{2} y^{2}$ | $-28 x^{3} y^{2}$ | $36 x^{3} y^{3}$ |
| $7 x^{2} y$ | $14 x^{3} y$ | $-35 x^{2} y^{2}$ | $21 x^{4} y$ | $-28 x^{3} y^{2}$ | $49 x^{4} y^{2}$ | $-63 x^{4} y^{3}$ |
| $-9 x^{2} y^{2}$ | $-18 x^{3} y^{2}$ | $45 x^{2} y^{3}$ | $-27 x^{4} y^{2}$ | $36 x^{3} y^{3}$ | $-63 x^{4} y^{3}$ | $81 x^{4} y^{4}$ |

4. Obtain the volume of rectangular boxes with the following length, breadth and height, respectively.
(i) $5 a, 3 a^{2}, 7 a^{4}$
(ii) $2 p, 4 q, 8 r$
(iii) $x y, 2 x^{2} y, 2 x y^{2}$
(iv) $a, 2 b, 3 c$

## Solution:

Volume of rectangle $=$ length x breadth x height. To evaluate volume of rectangular boxes, multiply all the monomials.
(i) $5 a \times 3 a^{2} \times 7 a^{4}=(5 \times 3 \times 7)\left(a \times a^{2} \times a^{4}\right)=105 a^{7}$
(ii) $2 p \times 4 q \times 8 r=(2 \times 4 \times 8)(\mathrm{p} \times \mathrm{q} \times \mathrm{r})=64 p q r$
(iii) $y \times 2 x^{2} \mathrm{y} \times 2 x y^{2}=(1 \times 2 \times 2)\left(\mathrm{x} \times x^{2} \times \mathrm{x} \times \mathrm{y} \times \mathrm{y} \times y^{2}\right)=4 x^{4} \mathrm{y}^{4}$
(iv) $a \times 2 b \times 3 c=(1 \times 2 \times 3)(a \times b \times c)=6 a b c$
5. Obtain the product of
(i) $\mathrm{xy}, \mathrm{yz}, \mathrm{zx}$
(ii) $\mathbf{a},-\mathbf{a}^{2}, \mathbf{a}^{3}$
(iii) $2,4 y, 8 y^{2}, 16 y^{3}$
(iv) a, 2b, 3c, 6abc
(v) m, - mn, mnp

Solution:
(i) $x y \times y z \times z x=x^{2} y^{2} z^{2}$
(ii) $a \times-a^{2} \times a^{3}=-a^{6}$
(iii) $2 \times 4 y \times 8 y^{2} \times 16 y^{3}=1024 y^{6}$
(iv) $a \times 2 b \times 3 c \times 6 a b c=36 a^{2} b^{2} c^{2}$
(v) $m \times-m n \times m n p=-m^{3} n^{2} p$

