EXERCISE 9.3

1. In Fig.9.23, E is any point on the median $A D$ of $\triangle \mathrm{ABC}$. Show that $\operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACE})$.

Fig. 9.23

Solution:
Given,
AD is the median of $\triangle \mathrm{ABC} . \therefore$, it will divide $\triangle \mathrm{ABC}$ into two triangles of equal area.
$\therefore \operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ACD})-(\mathrm{i})$
also,
$E D$ is the median of $\triangle A B C$.
$\therefore \operatorname{ar}(\mathrm{EBD})=\operatorname{ar}(\mathrm{ECD})-(\mathrm{ii})$
Subtracting (ii) from (i),
$\operatorname{ar}(\mathrm{ABD})-\operatorname{ar}(\mathrm{EBD})=\operatorname{ar}(\mathrm{ACD})-\operatorname{ar}(E C D)$
$\Rightarrow \operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACE})$
2. In a triangle ABC, E is the mid-point of median AD . Show that $\operatorname{ar}(\mathrm{BED})=1 / 4 \operatorname{ar}(\mathrm{ABC})$.

Solution:

$\operatorname{ar}(\mathrm{BED})=(1 / 2) \times \mathrm{BD} \times \mathrm{DE}$
Since E is the mid-point of AD ,
$\mathrm{AE}=\mathrm{DE}$
Since $A D$ is the median on side $B C$ of triangle $A B C$,
$\mathrm{BD}=\mathrm{DC}$
,
$\mathrm{DE}=(1 / 2) \mathrm{AD}-(\mathrm{i})$
$\mathrm{BD}=(1 / 2) \mathrm{BC}-(\mathrm{ii})$
From (i) and (ii), we get
$\operatorname{ar}(\mathrm{BED})=(1 / 2) \times(1 / 2) \mathrm{BC} \times(1 / 2) \mathrm{AD}$
$\Rightarrow \operatorname{ar}(\mathrm{BED})=(1 / 2) \times(1 / 2) \operatorname{ar}(\mathrm{ABC})$
$\Rightarrow \operatorname{ar}(\mathrm{BED})=1 / 4 \operatorname{ar}(\mathrm{ABC})$
3. Show that the diagonals of a parallelogram divide it into four triangles of equal area.

Solution:

O is the midpoint of AC and BD . (Diagonals bisect each other.)
In $\triangle \mathrm{ABC}, \mathrm{BO}$ is the median.
$\therefore \operatorname{ar}(\mathrm{AOB})=\operatorname{ar}(\mathrm{BOC})-$ (i)
also,
In $\triangle \mathrm{BCD}, \mathrm{CO}$ is the median.
$\therefore \operatorname{ar}(\mathrm{BOC})=\operatorname{ar}(\mathrm{COD})-(\mathrm{ii})$
In $\triangle \mathrm{ACD}, \mathrm{OD}$ is the median.
$\therefore \operatorname{ar}(\mathrm{AOD})=\operatorname{ar}(\mathrm{COD})-($ (iii $)$
In $\triangle \mathrm{ABD}, \mathrm{AO}$ is the median.
$\therefore \operatorname{ar}(\mathrm{AOD})=\operatorname{ar}(\mathrm{AOB})-$ (iv)
From equations (i), (ii), (iii) and (iv), we get
$\operatorname{ar}(\mathrm{BOC})=\operatorname{ar}(\mathrm{COD})=\operatorname{ar}(\mathrm{AOD})=\operatorname{ar}(\mathrm{AOB})$
Hence, we get that the diagonals of a parallelogram divide it into four triangles of equal area.
4. In Fig. 9.24, $A B C$ and $A B D$ are two triangles on the same base $A B$. If the line-segment $C D$ is bisected by $A B$ at O , show that $\operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\mathrm{ABD})$.

Fig. 9.24
Solution:
In $\triangle \mathrm{ABC}, \mathrm{AO}$ is the median. (CD is bisected by AB at O .)
$\therefore \operatorname{ar}(\mathrm{AOC})=\operatorname{ar}(\mathrm{AOD})-(\mathrm{i})$
also,
$\triangle \mathrm{BCD}, \mathrm{BO}$ is the median. (CD is bisected by AB at O .)
$\therefore \operatorname{ar}(\mathrm{BOC})=\operatorname{ar}(\mathrm{BOD})-(\mathrm{ii})$
Adding (i) and (ii),
We get
$\operatorname{ar}(\mathrm{AOC})+\operatorname{ar}(\mathrm{BOC})=\operatorname{ar}(\mathrm{AOD})+\operatorname{ar}(\mathrm{BOD})$
$\Rightarrow \operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\mathrm{ABD})$
5. D, E and F are, respectively, the mid-points of the sides BC, CA and AB of a $\triangle A B C$.

Show that
(i) BDEF is a parallelogram.
(ii) $\operatorname{ar}(\mathrm{DEF})=1 / 4 \operatorname{ar}(\mathbf{A B C})$
(iii) $\operatorname{ar}(\mathbf{B D E F})=1 / 2 \operatorname{ar}(\mathbf{A B C})$

Solution:

(i) In $\triangle \mathrm{ABC}$,
$\mathrm{EF} \| \mathrm{BC}$ and $\mathrm{EF}=1 / 2 \mathrm{BC}$ (by the mid-point theorem.)
also,
$\mathrm{BD}=1 / 2 \mathrm{BC}$ (D is the mid-point.)
So, $B D=E F$
also,
BF and DE are parallel and equal to each other.
\therefore, the pair of opposite sides are equal in length and parallel to each other.
\therefore BDEF is a parallelogram.
(ii) Proceeding from the result of (i),

BDEF, DCEF, and AFDE are parallelograms.
A diagonal of a parallelogram divides it into two triangles of equal area.
$\therefore \operatorname{ar}(\triangle \mathrm{BFD})=\operatorname{ar}(\triangle \mathrm{DEF})($ For parallelogram BDEF $)$ - (i)
also,
$\operatorname{ar}(\triangle \mathrm{AFE})=\operatorname{ar}(\triangle \mathrm{DEF})($ For parallelogram DCEF $)-$ (ii)
$\operatorname{ar}(\triangle \mathrm{CDE})=\operatorname{ar}(\triangle \mathrm{DEF})($ For parallelogram AFDE $) ~-~($ iii $)$
From (i), (ii) and (iii)

$$
\begin{aligned}
& \operatorname{ar}(\triangle \mathrm{BFD})=\operatorname{ar}(\triangle \mathrm{AFE})=\operatorname{ar}(\triangle \mathrm{CDE})=\operatorname{ar}(\triangle \mathrm{DEF}) \\
& \Rightarrow \operatorname{ar}(\triangle \mathrm{BFD})+\operatorname{ar}(\triangle \mathrm{AFE})+\operatorname{ar}(\triangle \mathrm{CDE})+\operatorname{ar}(\triangle \mathrm{DEF})=\operatorname{ar}(\triangle \mathrm{ABC}) \\
& \Rightarrow 4 \operatorname{ar}(\triangle \mathrm{DEF})=\operatorname{ar}(\triangle \mathrm{ABC}) \\
& \Rightarrow \operatorname{ar}(\mathrm{DEF})=1 / 4 \operatorname{ar}(\mathrm{ABC})
\end{aligned}
$$

(iii) Area (parallelogram BDEF) $=\operatorname{ar}(\triangle \mathrm{DEF})+\operatorname{ar}(\triangle \mathrm{BDE})$
$\Rightarrow \operatorname{ar}($ parallelogram BDEF$)=\operatorname{ar}(\triangle \mathrm{DEF})+\operatorname{ar}(\triangle \mathrm{DEF})$
$\Rightarrow \operatorname{ar}($ parallelogram BDEF$)=2 \times \operatorname{ar}(\triangle \mathrm{DEF})$
$\Rightarrow \operatorname{ar}($ parallelogram BDEF$)=2 \times 1 / 4 \operatorname{ar}(\triangle \mathrm{ABC})$
$\Rightarrow \operatorname{ar}($ parallelogram $B D E F)=1 / 2 \operatorname{ar}(\triangle \mathrm{ABC})$
6. In Fig. 9.25, diagonals $A C$ and $B D$ of quadrilateral $A B C D$ intersect at O such that $O B=O D$. If $\mathbf{A B}=\mathbf{C D}$, then show that
(i) $\operatorname{ar}(D O C)=\operatorname{ar}(A O B)$
(ii) $\operatorname{ar}(\mathrm{DCB})=\operatorname{ar}(\mathrm{ACB})$
(iii) $\mathrm{DA} \| \mathrm{CB}$ or ABCD is a parallelogram.
[Hint: From D and B, draw perpendiculars to AC.]

Fig. 9.25
Solution:

Fig. 9.25
Given,
$\mathrm{OB}=\mathrm{OD}$ and $\mathrm{AB}=\mathrm{CD}$
Construction,
$\mathrm{DE} \perp \mathrm{AC}$ and $\mathrm{BF} \perp \mathrm{AC}$ are drawn.
Proof:
(i) In $\triangle \mathrm{DOE}$ and $\triangle \mathrm{BOF}$,
$\angle \mathrm{DEO}=\angle \mathrm{BFO}$ (Perpendiculars)
$\angle \mathrm{DOE}=\angle \mathrm{BOF}$ (Vertically opposite angles)
$\mathrm{OD}=\mathrm{OB}$ (Given)
$\therefore, \triangle \mathrm{DOE} \cong \triangle \mathrm{BOF}$ by AAS congruence condition.
$\therefore, \mathrm{DE}=\mathrm{BF}(\mathrm{By} \mathrm{CPCT})-(\mathrm{i})$
also, $\operatorname{ar}(\triangle \mathrm{DOE})=\operatorname{ar}(\triangle \mathrm{BOF})($ Congruent triangles $)-($ ii $)$
Now,
In $\triangle \mathrm{DEC}$ and $\triangle \mathrm{BFA}$,
$\angle \mathrm{DEC}=\angle \mathrm{BFA}$ (Perpendiculars)
$\mathrm{CD}=\mathrm{AB}$ (Given)
$\mathrm{DE}=\mathrm{BF}($ From i)
$\therefore, \Delta \mathrm{DEC} \cong \triangle \mathrm{BFA}$ by RHS congruence condition.
$\therefore, \operatorname{ar}(\triangle \mathrm{DEC})=\operatorname{ar}(\triangle \mathrm{BFA})($ Congruent triangles $)-($ iii $)$
Adding (ii) and (iii),
$\operatorname{ar}(\triangle \mathrm{DOE})+\operatorname{ar}(\triangle \mathrm{DEC})=\operatorname{ar}(\triangle \mathrm{BOF})+\operatorname{ar}(\triangle \mathrm{BFA})$
$\Rightarrow \operatorname{ar}(\mathrm{DOC})=\operatorname{ar}(\mathrm{AOB})$
(ii) $\operatorname{ar}(\triangle \mathrm{DOC})=\operatorname{ar}(\triangle \mathrm{AOB})$

Adding $\operatorname{ar}(\triangle \mathrm{OCB})$ in LHS and RHS, we get
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DOC})+\operatorname{ar}(\triangle \mathrm{OCB})=\operatorname{ar}(\triangle \mathrm{AOB})+\operatorname{ar}(\triangle \mathrm{OCB})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DCB})=\operatorname{ar}(\triangle \mathrm{ACB})$
(iii) When two triangles have same base and equal areas, the triangles will be in between the same parallel lines, $\operatorname{ar}(\triangle \mathrm{DCB})=\operatorname{ar}(\triangle \mathrm{ACB})$.

DA || BC - (iv)
For quadrilateral $A B C D$, one pair of opposite sides are equal $(A B=C D)$, and the other pair of opposite sides are parallel.
$\therefore, \mathrm{ABCD}$ is parallelogram.
7. D and E are points on sides $A B$ and $A C$, respectively, of $\triangle A B C$ such that $\operatorname{ar}(D B C)=\operatorname{ar}(E B C)$. Prove that $D E \|$ BC.
Solution:

$\triangle \mathrm{DBC}$ and $\triangle \mathrm{EBC}$ are on the same base BC and also have equal areas.
\therefore, they will lie between the same parallel lines.
$\therefore, \mathrm{DE} \| \mathrm{BC}$
8. $X Y$ is a line parallel to side $B C$ of a triangle $A B C$. If $B E \| A C$ and $C F \| A B$ meet $X Y$ at E and F respectively, show that
$\operatorname{ar}(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{ACF})$
Solution:

Given,
$\mathrm{XY}\|\mathrm{BC}, \mathrm{BE}\| \mathrm{AC}$ and $\mathrm{CF} \| \mathrm{AB}$
To show,
$\operatorname{ar}(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{ACF})$
Proof:
BCYE is a $\| g m$ as $\triangle \mathrm{ABE}$ and $\| \mathrm{gm}$ BCYE are on the same base BE and between the same parallel lines BE and AC .
$\therefore, \operatorname{ar}(\mathrm{ABE})=1 / 2 \operatorname{ar}(\mathrm{BCYE}) \ldots$ (1)
Now,
CF \| AB and XY \| BC
$\Rightarrow \mathrm{CF} \| \mathrm{AB}$ and $\mathrm{XF} \| \mathrm{BC}$
\Rightarrow BCFX is a $\| \mathrm{gm}$
As $\triangle \mathrm{ACF}$ and $\|$ gm BCFX are on the same base CF and in-between the same parallel AB and FC .
\therefore ar ($\triangle \mathrm{ACF}$) $=1 / 2$ ar (BCFX) ... (2)
But,
$\| \mathrm{gm}$ BCFX and $\| \mathrm{gm} \mathrm{BCYE}$ are on the same base BC and between the same parallels BC and EF .
\therefore,ar $(\mathrm{BCFX})=\operatorname{ar}(\mathrm{BCYE}) \ldots(3)$
From (1), (2) and (3), we get
ar $(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{ACF})$
$\Rightarrow \operatorname{ar}($ BEYC $)=\operatorname{ar}($ BXFC $)$
As the parallelograms are on the same base BC and in-between the same parallels EF and BC -(iii)
Also,
$\triangle \mathrm{AEB}$ and $\| \mathrm{gm}$ BEYC are on the same base BE and in-between the same parallels BE and AC.
$\Rightarrow \operatorname{ar}(\triangle \mathrm{AEB})=1 / 2 \operatorname{ar}(\mathrm{BEYC})$ — (iv)
Similarly,
$\triangle \mathrm{ACF}$ and $\| \mathrm{gm}$ BXFC on the same base CF and between the same parallels CF and AB .
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ACF})=1 / 2 \operatorname{ar}(\mathrm{BXFC})-(\mathrm{v})$
From (iii), (iv) and (v),
$\operatorname{ar}(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{ACF})$
9. The side AB of a parallelogram ABCD is produced to any point P . A line through A and parallel to CP meets CB produced at Q, and then parallelogram $P B Q R$ is completed (see Fig. 9.26). Show that $\operatorname{ar}(\mathrm{ABCD})=\operatorname{ar}(\mathrm{PBQR})$.
[Hint: Join AC and PQ. Now compare $\operatorname{ar(ACQ)~and~ar(APQ).]~}$

Fig. 9.26
Solution:

AC and PQ are joined.
$\operatorname{Ar}(\triangle \mathrm{ACQ})=\operatorname{ar}(\triangle \mathrm{APQ})(\mathrm{On}$ the same base AQ and between the same parallel lines AQ and CP$)$
$\Rightarrow \operatorname{ar}(\triangle A C Q)-\operatorname{ar}(\triangle A B Q)=\operatorname{ar}(\triangle A P Q)-\operatorname{ar}(\triangle A B Q)$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{QBP})$ - (i)
$A C$ and $Q P$ are diagonals $A B C D$ and $P B Q R$.
$\therefore, \operatorname{ar}(\mathrm{ABC})=1 / 2 \operatorname{ar}(\mathrm{ABCD})$ — (ii)
$\operatorname{ar}(\mathrm{QBP})=1 / 2 \operatorname{ar}(\mathrm{PBQR})$ — (iii)
From (ii) and (ii),
$1 / 2 \operatorname{ar}(\mathrm{ABCD})=1 / 2 \operatorname{ar}(\mathrm{PBQR})$
$\Rightarrow \operatorname{ar}(\mathrm{ABCD})=\operatorname{ar}(\mathrm{PBQR})$
10. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at O. Prove that ar $(A O D)=$ ar (BOC).
Solution:

$\triangle D A C$ and $\triangle D B C$ lie on the same base $D C$ and between the same parallels $A B$ and $C D$.
$\operatorname{Ar}(\triangle \mathrm{DAC})=\operatorname{ar}(\triangle \mathrm{DBC})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DAC})-\operatorname{ar}(\triangle \mathrm{DOC})=\operatorname{ar}(\triangle \mathrm{DBC})-\operatorname{ar}(\triangle \mathrm{DOC})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{AOD})=\operatorname{ar}(\triangle \mathrm{BOC})$
11. In Fig. 9.27, ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F.

Show that
(i) $\operatorname{ar}(\triangle \mathrm{ACB})=\operatorname{ar}(\triangle \mathrm{ACF})$
(ii) $\operatorname{ar}(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE})$

Fig. 9.27
Solution:

1. $\triangle \mathrm{ACB}$ and $\triangle \mathrm{ACF}$ lie on the same base AC and between the same parallels AC and BF .
$\therefore \operatorname{ar}(\triangle \mathrm{ACB})=\operatorname{ar}(\triangle \mathrm{ACF})$
2. $\operatorname{ar}(\triangle \mathrm{ACB})=\operatorname{ar}(\triangle \mathrm{ACF})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ACB})+\operatorname{ar}(\mathrm{ACDE})=\operatorname{ar}(\triangle \mathrm{ACF})+\operatorname{ar}(\mathrm{ACDE})$
$\Rightarrow \operatorname{ar}(\mathrm{ABCDE})=\operatorname{ar}(\mathrm{AEDF})$
3. A villager Itwaari has a plot of land in the shape of a quadrilateral. The Gram Panchayat of the village decided to take over some portion of his plot from one of the corners to construct a Health Centre. Itwaari agrees to the above proposal with the condition that he should be given an equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how this proposal will be implemented.
Solution:

Let ABCD be the plot of the land in the shape of a quadrilateral.

To construct,
Join the diagonal BD.
Draw AE parallel to BD.
Join BE, which intersected AD at O .
We get
$\triangle B C E$ is the shape of the original field.
$\triangle \mathrm{AOB}$ is the area for constructing a health centre.
$\triangle \mathrm{DEO}$ is the land joined to the plot.
To prove:
$\operatorname{ar}(\triangle \mathrm{DEO})=\operatorname{ar}(\triangle \mathrm{AOB})$
Proof:
$\triangle \mathrm{DEB}$ and $\triangle \mathrm{DAB}$ lie on the same base BD , in-between the same parallels BD and AE .
$\operatorname{Ar}(\triangle \mathrm{DEB})=\operatorname{ar}(\triangle \mathrm{DAB})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DEB})-\operatorname{ar} \triangle \mathrm{DOB})=\operatorname{ar}(\triangle \mathrm{DAB})-\operatorname{ar}(\triangle \mathrm{DOB})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DEO})=\operatorname{ar}(\triangle \mathrm{AOB})$
13. $A B C D$ is a trapezium with $A B \| D C$. A line parallel to $A C$ intersects $A B$ at X and $B C$ at Y. Prove that ar $(\triangle \mathrm{ADX})=\operatorname{ar}(\triangle \mathrm{ACY})$.

[Hint: Join CX.]

Solution:

Given,
$A B C D$ is a trapezium with $A B \| D C$.
XY || AC
Construction,
Join CX
To prove,
$\operatorname{ar}(\mathrm{ADX})=\operatorname{ar}(\mathrm{ACY})$
Proof:
$\operatorname{ar}(\triangle \mathrm{ADX})=\operatorname{ar}(\triangle \mathrm{AXC})$ - (i) $($ Since they are on the same base AX and in-between the same parallels AB and CD$)$
Also,
$\operatorname{ar}(\triangle \mathrm{AXC})=\operatorname{ar}(\triangle \mathrm{ACY})$ - (ii) (Since they are on the same base AC and in-between the same parallels XY and AC.)
(i) and (ii),
$\operatorname{ar}(\triangle \mathrm{ADX})=\operatorname{ar}(\triangle \mathrm{ACY})$
14. In Fig.9.28, $A P\|B Q\| C R$. Prove that $\operatorname{ar}(\triangle A Q C)=\operatorname{ar}(\triangle P B R)$.

Fig. 9.28
Solution:
Given,
AP || BQ \| CR
To prove,
$\operatorname{ar}(\mathrm{AQC})=\operatorname{ar}(\mathrm{PBR})$
Proof:
$\operatorname{ar}(\triangle \mathrm{AQB})=\operatorname{ar}(\triangle \mathrm{PBQ})$ - (i) (Since they are on the same base BQ and between the same parallels AP and BQ.$)$
also,
$\operatorname{ar}(\triangle \mathrm{BQC})=\operatorname{ar}(\triangle \mathrm{BQR})-($ ii $)$ (Since they are on the same base $B Q$ and between the same parallels $B Q$ and $C R$.
Adding (i) and (ii),
$\operatorname{ar}(\triangle \mathrm{AQB})+\operatorname{ar}(\triangle \mathrm{BQC})=\operatorname{ar}(\triangle \mathrm{PBQ})+\operatorname{ar}(\triangle \mathrm{BQR})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{AQC})=\operatorname{ar}(\triangle \mathrm{PBR})$
15. Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O in such a way that $\operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)$. Prove that ABCD is a trapezium.
Solution:

Given,
$\operatorname{ar}(\triangle \mathrm{AOD})=\operatorname{ar}(\triangle \mathrm{BOC})$
To prove,
ABCD is a trapezium.
Proof:
$\operatorname{ar}(\triangle \mathrm{AOD})=\operatorname{ar}(\triangle \mathrm{BOC})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{AOD})+\operatorname{ar}(\triangle \mathrm{AOB})=\operatorname{ar}(\triangle \mathrm{BOC})+\operatorname{ar}(\triangle \mathrm{AOB})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ADB})=\operatorname{ar}(\triangle \mathrm{ACB})$
Areas of $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ACB}$ are equal. \therefore, they must lie between the same parallel lines.
$\therefore, \mathrm{AB} \| \mathrm{CD}$
$\therefore, \mathrm{ABCD}$ is a trapezium.
16. In Fig.9.29, $\operatorname{ar}(\mathrm{DRC})=\operatorname{ar}(\mathrm{DPC})$ and $\operatorname{ar}(B D P)=\operatorname{ar}(A R C)$. Show that both the quadrilaterals ABCD and DCPR are trapeziums.

Fig. 9.29

Solution:
Given,
$\operatorname{ar}(\triangle \mathrm{DRC})=\operatorname{ar}(\triangle \mathrm{DPC})$
$\operatorname{ar}(\triangle \mathrm{BDP})=\operatorname{ar}(\triangle \mathrm{ARC})$
To prove,
ABCD and DCPR are trapeziums.
Proof:
$\operatorname{ar}(\triangle \mathrm{BDP})=\operatorname{ar}(\triangle \mathrm{ARC})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{BDP})-\operatorname{ar}(\triangle \mathrm{DPC})=\operatorname{ar}(\triangle \mathrm{DRC})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{BDC})=\operatorname{ar}(\triangle \mathrm{ADC})$
$\therefore, \operatorname{ar}(\triangle \mathrm{BDC})$ and $\operatorname{ar}(\triangle \mathrm{ADC})$ are lying in-between the same parallel lines.
$\therefore, \mathrm{AB} \| \mathrm{CD}$
ABCD is a trapezium.
Similarly,
$\operatorname{ar}(\triangle \mathrm{DRC})=\operatorname{ar}(\triangle \mathrm{DPC})$.
$\therefore, \operatorname{ar}(\triangle \mathrm{DRC})$ and $\operatorname{ar}(\triangle \mathrm{DPC})$ are lying in-between the same parallel lines.
$\therefore, \mathrm{DC} \| \mathrm{PR}$
$\therefore, \mathrm{DCPR}$ is a trapezium.

