EXERCISE 9.1

1. Which of the following figures lie on the same base and in-between the same parallels? In such a case, write the common base and the two parallels.

Fig. 9.8

Solution:
(i) Trapezium ABCD and $\triangle \mathrm{PDC}$ lie on the same DC and in-between the same parallel lines AB and DC .
(ii) Parallelogram PQRS and trapezium SMNR lie on the same base SR but not in-between the same parallel lines.
(iii) Parallelogram PQRS and $\triangle \mathrm{RTQ}$ lie on the same base QR and in-between the same parallel lines QR and PS .
(iv) Parallelogram ABCD and $\triangle \mathrm{PQR}$ do not lie on the same base but in-between the same parallel lines BC and AD .
(v) Quadrilateral ABQD and trapezium APCD lie on the same base AD and in-between the same parallel lines AD and BQ.
(vi) Parallelogram PQRS and parallelogram ABCD do not lie on the same base SR but in-between the same parallel lines SR and PQ .

EXERCISE 9.2

1. In Fig. 9.15, ABCD is a parallelogram, $\mathrm{AE} \perp \mathrm{DC}$ and $\mathrm{CF} \perp \mathrm{AD}$. If $\mathrm{AB}=16 \mathrm{~cm}, \mathrm{AE}=\mathbf{8} \mathrm{cm}$ and $\mathrm{CF}=10 \mathrm{~cm}$, find AD.

Fig. 9.15

Solution:
Given,
$\mathrm{AB}=\mathrm{CD}=16 \mathrm{~cm}$ (Opposite sides of a parallelogram.)
$\mathrm{CF}=10 \mathrm{~cm}$ and $\mathrm{AE}=8 \mathrm{~cm}$
Now,
Area of parallelogram $=$ Base \times Altitude
$=\mathrm{CD} \times \mathrm{AE}=\mathrm{AD} \times \mathrm{CF}$
$\Rightarrow 16 \times 8=\mathrm{AD} \times 10$
$\Rightarrow \mathrm{AD}=128 / 10 \mathrm{~cm}$
$\Rightarrow \mathrm{AD}=12.8 \mathrm{~cm}$
2. If E, F, G and H are, respectively. the mid-points of the sides of a parallelogram $A B C D$ show that ar (EFGH) $=1 / 2 \operatorname{ar}(\mathrm{ABCD})$.

Solution:

Given,
$\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are the mid-points of the sides of a parallelogram ABCD , respectively.
To prove,
$\operatorname{ar}(\mathrm{EFGH})=1 / 2 \operatorname{ar}(\mathrm{ABCD})$
Construction,
H and F are joined.
Proof,
$\mathrm{AD} \| \mathrm{BC}$ and $\mathrm{AD}=\mathrm{BC}$ (Opposite sides of a parallelogram.)
$\Rightarrow 1 / 2 \mathrm{AD}=1 / 2 \mathrm{BC}$
Also,
AH \| BF and and DH \| CF
$\Rightarrow \mathrm{AH}=\mathrm{BF}$ and $\mathrm{DH}=\mathrm{CF}$ (H and F are mid-points.)
$\therefore, \mathrm{ABFH}$ and HFCD are parallelograms.
Now,
We know that $\triangle \mathrm{EFH}$ and parallelogram ABFH lie on the same FH , the common base and in-between the same parallel lines AB and HF .
\therefore area of $\mathrm{EFH}=1 / 2$ area of ABFH - (i)
And, area of GHF $=1 / 2$ area of HFCD - (ii)
Adding (i) and (ii),
Area of $\Delta \mathrm{EFH}+$ area of $\Delta \mathrm{GHF}=1 / 2$ area of $\mathrm{ABFH}+1 / 2$ area of HFCD
\Rightarrow area of $\mathrm{EFGH}=$ area of ABFH
\therefore ar $(\mathrm{EFGH})=1 / 2 \operatorname{ar}(\mathrm{ABCD})$
3. P and Q are any two points lying on the sides $D C$ and $A D$, respectively, of a parallelogram $A B C D$.

Show that $\operatorname{ar}(\mathrm{APB})=\operatorname{ar}(B Q C)$.
Solution:

$\triangle \mathrm{APB}$ and parallelogram ABCD lie on the same base AB and in-between the same parallel AB and DC .
$\operatorname{ar}(\triangle \mathrm{APB})=1 / 2 \operatorname{ar}($ parallelogram ABCD$)$ - (i)
Similarly,
$\operatorname{ar}(\triangle \mathrm{BQC})=1 / 2 \operatorname{ar}($ parallelogram ABCD$)$ - (ii)
From (i) and (ii), we have
$\operatorname{ar}(\triangle \mathrm{APB})=\operatorname{ar}(\triangle \mathrm{BQC})$
4. In Fig. 9.16, P is a point in the interior of a parallelogram $A B C D$. Show that
(i) $\operatorname{ar}(\mathrm{APB})+\boldsymbol{\operatorname { a r }}(\mathrm{PCD})=1 / 2 \operatorname{ar}(\mathrm{ABCD})$
(ii) $\operatorname{ar}(\mathrm{APD})+\operatorname{ar}(\mathrm{PBC})=\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD})$
[Hint: Through P, draw a line parallel to AB.]

Fig. 9.16
Solution:

(i) A line GH is drawn parallel to AB passing through P .

In a parallelogram,
AB || GH (by construction) - (i)
\therefore,
$\mathrm{AD}\|\mathrm{BC} \Rightarrow \mathrm{AG}\| \mathrm{BH}$ - (ii)
From equations (i) and (ii),
ABHG is a parallelogram.
Now,
$\triangle \mathrm{APB}$ and parallelogram ABHG are lying on the same base AB and in-between the same parallel lines AB and GH .
$\therefore \operatorname{ar}(\triangle \mathrm{APB})=1 / 2 \operatorname{ar}(\mathrm{ABHG})$ - (iii)
also,
$\triangle \mathrm{PCD}$ and parallelogram CDGH are lying on the same base CD and in-between the same parallel lines CD and GH .
$\therefore \operatorname{ar}(\triangle \mathrm{PCD})=1 / 2 \operatorname{ar}(\mathrm{CDGH})$ - (iv)
Adding equations (iii) and (iv),
$\operatorname{ar}(\triangle \mathrm{APB})+\operatorname{ar}(\triangle \mathrm{PCD})=1 / 2[\operatorname{ar}(\mathrm{ABHG})+\operatorname{ar}(\mathrm{CDGH})]$
$\Rightarrow \operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD})=1 / 2 \operatorname{ar}(\mathrm{ABCD})$
(ii) A line EF is drawn parallel to AD passing through P .

In the parallelogram,
AD \| EF (by construction) - (i)
\therefore,
$\mathrm{AB}\|\mathrm{CD} \Rightarrow \mathrm{AE}\| \mathrm{DF}-$ (ii)
From equations (i) and (ii),
AEDF is a parallelogram.
Now,
$\triangle \mathrm{APD}$ and parallelogram AEFD are lying on the same base AD and in-between the same parallel lines AD and EF .
$\therefore \operatorname{ar}(\triangle \mathrm{APD})=1 / 2 \operatorname{ar}(\mathrm{AEFD})$ — (iii)
also,
$\triangle \mathrm{PBC}$ and parallelogram BCFE are lying on the same base BC and in-between the same parallel lines BC and EF .
$\therefore \operatorname{ar}(\triangle \mathrm{PBC})=1 / 2 \operatorname{ar}(\mathrm{BCFE})$ - (iv)
Adding equations (iii) and (iv),
$\operatorname{ar}(\triangle \mathrm{APD})+\operatorname{ar}(\triangle \mathrm{PBC})=1 / 2\{\operatorname{ar}(\mathrm{AEFD})+\operatorname{ar}(\mathrm{BCFE})\}$
$\Rightarrow \operatorname{ar}(\mathrm{APD})+\operatorname{ar}(\mathrm{PBC})=\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD})$
5. In Fig. 9.17, PQRS and ABRS are parallelograms, and X is any point on side BR. Show that
(i) ar (PQRS) = ar (ABRS)
(ii) $\operatorname{ar}(\mathbf{A X S})=1 / 2$ ar $($ PQRS $)$

Fig. 9.17

Solution:

(i) Parallelogram PQRS and ABRS lie on the same base SR and in-between the same parallel lines SR and PB .
$\therefore \operatorname{ar}(\mathrm{PQRS})=\operatorname{ar}(\mathrm{ABRS})-(\mathrm{i})$
(ii) $\triangle \mathrm{AXS}$ and parallelogram ABRS are lying on the same base AS and in-between the same parallel lines AS and BR.
$\therefore \operatorname{ar}(\triangle \mathrm{AXS})=1 / 2 \operatorname{ar}(\mathrm{ABRS})$ - (ii)
From (i) and (ii), we find that
$\operatorname{ar}(\triangle \mathrm{AXS})=1 / 2 \operatorname{ar}(\mathrm{PQRS})$
6. A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts are the fields divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?

Solution:

The field is divided into three parts, each in a triangular shape.
Let $\triangle \mathrm{PSA}, \triangle \mathrm{PAQ}$ and $\triangle \mathrm{QAR}$ be the triangles.
Area of $(\triangle \mathrm{PSA}+\triangle \mathrm{PAQ}+\triangle \mathrm{QAR})=$ Area of PQRS - (i)
Area of $\triangle P A Q=1 / 2$ area of $P Q R S$ - (ii)
Here, the triangle and parallelogram are on the same base and in-between the same parallel lines.
From (i) and (ii),
Area of $\triangle \mathrm{PSA}+$ Area of $\triangle \mathrm{QAR}=1 / 2$ area of PQRS — (iii)
From (ii) and (iii), we can conclude that
The farmer must sow wheat or pulses in $\triangle \mathrm{PAQ}$ or either in both $\triangle \mathrm{PSA}$ and $\triangle \mathrm{QAR}$.

EXERCISE 9.3

1. In Fig.9.23, E is any point on the median $A D$ of $\triangle \mathrm{ABC}$. Show that $\operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACE})$.

Fig. 9.23

Solution:
Given,
AD is the median of $\triangle \mathrm{ABC} . \therefore$, it will divide $\triangle \mathrm{ABC}$ into two triangles of equal area.
$\therefore \operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ACD})-(\mathrm{i})$
also,
$E D$ is the median of $\triangle A B C$.
$\therefore \operatorname{ar}(\mathrm{EBD})=\operatorname{ar}(\mathrm{ECD})-(\mathrm{ii})$
Subtracting (ii) from (i),
$\operatorname{ar}(\mathrm{ABD})-\operatorname{ar}(E B D)=\operatorname{ar}(\mathrm{ACD})-\operatorname{ar}(E C D)$
$\Rightarrow \operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACE})$
2. In a triangle ABC, E is the mid-point of median AD . Show that $\operatorname{ar}(\mathrm{BED})=1 / 4 \operatorname{ar}(\mathrm{ABC})$.

Solution:

$\operatorname{ar}(\mathrm{BED})=(1 / 2) \times \mathrm{BD} \times \mathrm{DE}$
Since E is the mid-point of AD ,
$\mathrm{AE}=\mathrm{DE}$
Since $A D$ is the median on side $B C$ of triangle $A B C$,
$\mathrm{BD}=\mathrm{DC}$
,
$\mathrm{DE}=(1 / 2) \mathrm{AD}-(\mathrm{i})$
$\mathrm{BD}=(1 / 2) \mathrm{BC}-(\mathrm{ii})$
From (i) and (ii), we get
$\operatorname{ar}(\mathrm{BED})=(1 / 2) \times(1 / 2) \mathrm{BC} \times(1 / 2) \mathrm{AD}$
$\Rightarrow \operatorname{ar}(\mathrm{BED})=(1 / 2) \times(1 / 2) \operatorname{ar}(\mathrm{ABC})$
$\Rightarrow \operatorname{ar}(\mathrm{BED})=1 / 4 \operatorname{ar}(\mathrm{ABC})$
3. Show that the diagonals of a parallelogram divide it into four triangles of equal area.

Solution:

O is the midpoint of AC and BD . (Diagonals bisect each other.)
In $\triangle \mathrm{ABC}, \mathrm{BO}$ is the median.
$\therefore \operatorname{ar}(\mathrm{AOB})=\operatorname{ar}(\mathrm{BOC})-$ (i)
also,
In $\triangle \mathrm{BCD}, \mathrm{CO}$ is the median.
$\therefore \operatorname{ar}(\mathrm{BOC})=\operatorname{ar}(\mathrm{COD})-(\mathrm{ii})$
In $\triangle \mathrm{ACD}, \mathrm{OD}$ is the median.
$\therefore \operatorname{ar}(\mathrm{AOD})=\operatorname{ar}(\mathrm{COD})-($ (iii $)$
In $\triangle \mathrm{ABD}, \mathrm{AO}$ is the median.
$\therefore \operatorname{ar}(\mathrm{AOD})=\operatorname{ar}(\mathrm{AOB})-$ (iv)
From equations (i), (ii), (iii) and (iv), we get
$\operatorname{ar}(\mathrm{BOC})=\operatorname{ar}(\mathrm{COD})=\operatorname{ar}(\mathrm{AOD})=\operatorname{ar}(\mathrm{AOB})$
Hence, we get that the diagonals of a parallelogram divide it into four triangles of equal area.
4. In Fig. 9.24, $A B C$ and $A B D$ are two triangles on the same base $A B$. If the line-segment $C D$ is bisected by $A B$ at 0 , show that $\operatorname{ar}(A B C)=\operatorname{ar}(A B D)$.

Fig. 9.24
Solution:
In $\triangle \mathrm{ABC}, \mathrm{AO}$ is the median. (CD is bisected by AB at O .)
$\therefore \operatorname{ar}(\mathrm{AOC})=\operatorname{ar}(\mathrm{AOD})-(\mathrm{i})$
also,
$\triangle \mathrm{BCD}, \mathrm{BO}$ is the median. (CD is bisected by AB at O .)
$\therefore \operatorname{ar}(\mathrm{BOC})=\operatorname{ar}(\mathrm{BOD})-(\mathrm{ii})$
Adding (i) and (ii),
We get
$\operatorname{ar}(\mathrm{AOC})+\operatorname{ar}(\mathrm{BOC})=\operatorname{ar}(\mathrm{AOD})+\operatorname{ar}(\mathrm{BOD})$
$\Rightarrow \operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\mathrm{ABD})$
5. D, E and F are, respectively, the mid-points of the sides BC, CA and AB of a $\triangle A B C$.

Show that
(i) BDEF is a parallelogram.
(ii) $\operatorname{ar}(\mathrm{DEF})=1 / 4 \operatorname{ar}(\mathbf{A B C})$
(iii) $\operatorname{ar}(\mathbf{B D E F})=1 / 2 \operatorname{ar}(\mathbf{A B C})$

Solution:

(i) In $\triangle \mathrm{ABC}$,
$\mathrm{EF} \| \mathrm{BC}$ and $\mathrm{EF}=1 / 2 \mathrm{BC}$ (by the mid-point theorem.)
also,
$\mathrm{BD}=1 / 2 \mathrm{BC}(\mathrm{D}$ is the mid-point.)
So, $B D=E F$
also,
BF and DE are parallel and equal to each other.
\therefore, the pair of opposite sides are equal in length and parallel to each other.
\therefore BDEF is a parallelogram.
(ii) Proceeding from the result of (i),

BDEF, DCEF, and AFDE are parallelograms.
A diagonal of a parallelogram divides it into two triangles of equal area.
$\therefore \operatorname{ar}(\triangle \mathrm{BFD})=\operatorname{ar}(\triangle \mathrm{DEF})($ For parallelogram BDEF $)-(\mathrm{i})$
also,
$\operatorname{ar}(\triangle \mathrm{AFE})=\operatorname{ar}(\triangle \mathrm{DEF})($ For parallelogram DCEF) - (ii)
$\operatorname{ar}(\triangle \mathrm{CDE})=\operatorname{ar}(\triangle \mathrm{DEF})($ For parallelogram AFDE $) ~-~($ iii $)$
From (i), (ii) and (iii)

$$
\begin{aligned}
& \operatorname{ar}(\triangle \mathrm{BFD})=\operatorname{ar}(\triangle \mathrm{AFE})=\operatorname{ar}(\triangle \mathrm{CDE})=\operatorname{ar}(\triangle \mathrm{DEF}) \\
& \Rightarrow \operatorname{ar}(\triangle \mathrm{BFD})+\operatorname{ar}(\triangle \mathrm{AFE})+\operatorname{ar}(\triangle \mathrm{CDE})+\operatorname{ar}(\triangle \mathrm{DEF})=\operatorname{ar}(\triangle \mathrm{ABC}) \\
& \Rightarrow 4 \operatorname{ar}(\triangle \mathrm{DEF})=\operatorname{ar}(\triangle \mathrm{ABC}) \\
& \Rightarrow \operatorname{ar}(\mathrm{DEF})=1 / 4 \operatorname{ar}(\mathrm{ABC})
\end{aligned}
$$

(iii) Area (parallelogram BDEF) $=\operatorname{ar}(\triangle \mathrm{DEF})+\operatorname{ar}(\triangle \mathrm{BDE})$
$\Rightarrow \operatorname{ar}($ parallelogram BDEF$)=\operatorname{ar}(\triangle \mathrm{DEF})+\operatorname{ar}(\triangle \mathrm{DEF})$
$\Rightarrow \operatorname{ar}($ parallelogram BDEF$)=2 \times \operatorname{ar}(\triangle \mathrm{DEF})$
$\Rightarrow \operatorname{ar}($ parallelogram BDEF$)=2 \times 1 / 4 \operatorname{ar}(\triangle \mathrm{ABC})$
$\Rightarrow \operatorname{ar}($ parallelogram BDEF$)=1 / 2 \operatorname{ar}(\triangle \mathrm{ABC})$
6. In Fig. 9.25, diagonals $A C$ and $B D$ of quadrilateral $A B C D$ intersect at O such that $O B=O D$. If $\mathbf{A B}=\mathbf{C D}$, then show that
(i) $\operatorname{ar}(D O C)=\operatorname{ar}(A O B)$
(ii) $\operatorname{ar}(\mathrm{DCB})=\operatorname{ar}(\mathrm{ACB})$
(iii) $\mathrm{DA} \| \mathrm{CB}$ or ABCD is a parallelogram.
[Hint: From D and B, draw perpendiculars to AC.]

Fig. 9.25
Solution:

Fig. 9.25
Given,
$\mathrm{OB}=\mathrm{OD}$ and $\mathrm{AB}=\mathrm{CD}$
Construction,
$\mathrm{DE} \perp \mathrm{AC}$ and $\mathrm{BF} \perp \mathrm{AC}$ are drawn.
Proof:
(i) In $\triangle \mathrm{DOE}$ and $\triangle \mathrm{BOF}$,
$\angle \mathrm{DEO}=\angle \mathrm{BFO}$ (Perpendiculars)
$\angle \mathrm{DOE}=\angle \mathrm{BOF}$ (Vertically opposite angles)
$\mathrm{OD}=\mathrm{OB}$ (Given)
$\therefore, \triangle \mathrm{DOE} \cong \triangle \mathrm{BOF}$ by AAS congruence condition.
$\therefore, \mathrm{DE}=\mathrm{BF}(\mathrm{By} \mathrm{CPCT})-(\mathrm{i})$
also, $\operatorname{ar}(\triangle \mathrm{DOE})=\operatorname{ar}(\triangle \mathrm{BOF})($ Congruent triangles $)-($ ii $)$
Now,
In $\triangle \mathrm{DEC}$ and $\triangle \mathrm{BFA}$,
$\angle \mathrm{DEC}=\angle \mathrm{BFA}$ (Perpendiculars)
$\mathrm{CD}=\mathrm{AB}$ (Given)
$\mathrm{DE}=\mathrm{BF}($ From i)
$\therefore, \Delta \mathrm{DEC} \cong \triangle \mathrm{BFA}$ by RHS congruence condition.
$\therefore, \operatorname{ar}(\triangle \mathrm{DEC})=\operatorname{ar}(\triangle \mathrm{BFA})($ Congruent triangles $)-($ iii $)$
Adding (ii) and (iii),
$\operatorname{ar}(\triangle \mathrm{DOE})+\operatorname{ar}(\triangle \mathrm{DEC})=\operatorname{ar}(\Delta \mathrm{BOF})+\operatorname{ar}(\triangle \mathrm{BFA})$
$\Rightarrow \operatorname{ar}(\mathrm{DOC})=\operatorname{ar}(\mathrm{AOB})$
(ii) $\operatorname{ar}(\triangle \mathrm{DOC})=\operatorname{ar}(\triangle \mathrm{AOB})$

Adding $\operatorname{ar}(\triangle \mathrm{OCB})$ in LHS and RHS, we get
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DOC})+\operatorname{ar}(\triangle \mathrm{OCB})=\operatorname{ar}(\triangle \mathrm{AOB})+\operatorname{ar}(\triangle \mathrm{OCB})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DCB})=\operatorname{ar}(\triangle \mathrm{ACB})$
(iii) When two triangles have same base and equal areas, the triangles will be in between the same parallel lines, $\operatorname{ar}(\triangle \mathrm{DCB})=\operatorname{ar}(\triangle \mathrm{ACB})$.

DA || BC - (iv)
For quadrilateral $A B C D$, one pair of opposite sides are equal $(A B=C D)$, and the other pair of opposite sides are parallel.
$\therefore, \mathrm{ABCD}$ is parallelogram.
7. D and E are points on sides $A B$ and $A C$, respectively, of $\triangle A B C$ such that $\operatorname{ar}(D B C)=\operatorname{ar}(E B C)$. Prove that $D E \|$ BC.
Solution:

$\triangle \mathrm{DBC}$ and $\triangle \mathrm{EBC}$ are on the same base BC and also have equal areas.
\therefore, they will lie between the same parallel lines.
$\therefore, \mathrm{DE} \| \mathrm{BC}$
8. $X Y$ is a line parallel to side $B C$ of a triangle $A B C$. If $B E \| A C$ and $C F \| A B$ meet $X Y$ at E and F respectively, show that
$\operatorname{ar}(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{ACF})$
Solution:

Given,
$\mathrm{XY}\|\mathrm{BC}, \mathrm{BE}\| \mathrm{AC}$ and $\mathrm{CF} \| \mathrm{AB}$
To show,
$\operatorname{ar}(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{ACF})$
Proof:
BCYE is a $\| g m$ as $\triangle \mathrm{ABE}$ and $\| \mathrm{gm}$ BCYE are on the same base BE and between the same parallel lines BE and AC .
$\therefore, \operatorname{ar}(\mathrm{ABE})=1 / 2 \operatorname{ar}(\mathrm{BCYE}) \ldots$ (1)
Now,
CF \| AB and XY \| BC
$\Rightarrow \mathrm{CF} \| \mathrm{AB}$ and $\mathrm{XF} \| \mathrm{BC}$
\Rightarrow BCFX is a $\| \mathrm{gm}$
As $\triangle \mathrm{ACF}$ and $\|$ gm BCFX are on the same base CF and in-between the same parallel AB and FC .
\therefore ar ($\triangle \mathrm{ACF}$) $=1 / 2$ ar (BCFX) ... (2)
But,
$\| \mathrm{gm}$ BCFX and $\| \mathrm{gm} \mathrm{BCYE}$ are on the same base BC and between the same parallels BC and EF .
\therefore,ar $(\mathrm{BCFX})=\operatorname{ar}(\mathrm{BCYE}) \ldots(3)$
From (1), (2) and (3), we get
ar $(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{ACF})$
$\Rightarrow \operatorname{ar}($ BEYC $)=\operatorname{ar}($ BXFC $)$
As the parallelograms are on the same base BC and in-between the same parallels EF and BC -(iii)
Also,
$\triangle \mathrm{AEB}$ and $\| \mathrm{gm}$ BEYC are on the same base BE and in-between the same parallels BE and AC.
$\Rightarrow \operatorname{ar}(\triangle \mathrm{AEB})=1 / 2 \operatorname{ar}(\mathrm{BEYC})$ — (iv)
Similarly,
$\triangle \mathrm{ACF}$ and $\| \mathrm{gm}$ BXFC on the same base CF and between the same parallels CF and AB .
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ACF})=1 / 2 \operatorname{ar}(\mathrm{BXFC})-(\mathrm{v})$
From (iii), (iv) and (v),
$\operatorname{ar}(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{ACF})$
9. The side AB of a parallelogram ABCD is produced to any point P . A line through A and parallel to CP meets CB produced at Q, and then parallelogram $P B Q R$ is completed (see Fig. 9.26). Show that $\operatorname{ar}(\mathrm{ABCD})=\operatorname{ar}(\mathrm{PBQR})$.
[Hint: Join AC and PQ. Now compare $\operatorname{ar(ACQ)~and~ar(APQ).]~}$

Fig. 9.26
Solution:

AC and PQ are joined.
$\operatorname{Ar}(\triangle \mathrm{ACQ})=\operatorname{ar}(\triangle \mathrm{APQ})(\mathrm{On}$ the same base AQ and between the same parallel lines AQ and CP$)$
$\Rightarrow \operatorname{ar}(\triangle A C Q)-\operatorname{ar}(\triangle A B Q)=\operatorname{ar}(\triangle A P Q)-\operatorname{ar}(\triangle A B Q)$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{QBP})$ - (i)
$A C$ and $Q P$ are diagonals $A B C D$ and $P B Q R$.
$\therefore, \operatorname{ar}(\mathrm{ABC})=1 / 2 \operatorname{ar}(\mathrm{ABCD})$ — (ii)
$\operatorname{ar}(\mathrm{QBP})=1 / 2 \operatorname{ar}(\mathrm{PBQR})$ — (iii)
From (ii) and (ii),
$1 / 2 \operatorname{ar}(\mathrm{ABCD})=1 / 2 \operatorname{ar}(\mathrm{PBQR})$
$\Rightarrow \operatorname{ar}(\mathrm{ABCD})=\operatorname{ar}(\mathrm{PBQR})$
10. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at O. Prove that ar $(A O D)=$ ar (BOC).
Solution:

$\triangle D A C$ and $\triangle D B C$ lie on the same base $D C$ and between the same parallels $A B$ and $C D$.
$\operatorname{Ar}(\triangle \mathrm{DAC})=\operatorname{ar}(\triangle \mathrm{DBC})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DAC})-\operatorname{ar}(\triangle \mathrm{DOC})=\operatorname{ar}(\triangle \mathrm{DBC})-\operatorname{ar}(\triangle \mathrm{DOC})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{AOD})=\operatorname{ar}(\triangle \mathrm{BOC})$
11. In Fig. 9.27, ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F.

Show that
(i) $\operatorname{ar}(\triangle \mathrm{ACB})=\operatorname{ar}(\triangle \mathrm{ACF})$
(ii) $\operatorname{ar}(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE})$

Fig. 9.27
Solution:

1. $\triangle \mathrm{ACB}$ and $\triangle \mathrm{ACF}$ lie on the same base AC and between the same parallels AC and BF .
$\therefore \operatorname{ar}(\triangle \mathrm{ACB})=\operatorname{ar}(\triangle \mathrm{ACF})$
2. $\operatorname{ar}(\triangle \mathrm{ACB})=\operatorname{ar}(\triangle \mathrm{ACF})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ACB})+\operatorname{ar}(\mathrm{ACDE})=\operatorname{ar}(\triangle \mathrm{ACF})+\operatorname{ar}(\mathrm{ACDE})$
$\Rightarrow \operatorname{ar}(\mathrm{ABCDE})=\operatorname{ar}(\mathrm{AEDF})$
3. A villager Itwaari has a plot of land in the shape of a quadrilateral. The Gram Panchayat of the village decided to take over some portion of his plot from one of the corners to construct a Health Centre. Itwaari agrees to the above proposal with the condition that he should be given an equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how this proposal will be implemented.
Solution:

Let ABCD be the plot of the land in the shape of a quadrilateral.

To construct,
Join the diagonal BD.
Draw AE parallel to BD.
Join BE, which intersected AD at O .
We get
$\triangle B C E$ is the shape of the original field.
$\triangle \mathrm{AOB}$ is the area for constructing a health centre.
$\triangle \mathrm{DEO}$ is the land joined to the plot.
To prove:
$\operatorname{ar}(\triangle \mathrm{DEO})=\operatorname{ar}(\triangle \mathrm{AOB})$
Proof:
$\triangle \mathrm{DEB}$ and $\triangle \mathrm{DAB}$ lie on the same base BD , in-between the same parallels BD and AE .
$\operatorname{Ar}(\triangle \mathrm{DEB})=\operatorname{ar}(\triangle \mathrm{DAB})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DEB})-\operatorname{ar} \triangle \mathrm{DOB})=\operatorname{ar}(\triangle \mathrm{DAB})-\operatorname{ar}(\triangle \mathrm{DOB})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DEO})=\operatorname{ar}(\triangle \mathrm{AOB})$
13. $A B C D$ is a trapezium with $A B \| D C$. A line parallel to $A C$ intersects $A B$ at X and $B C$ at Y. Prove that ar $(\triangle \mathrm{ADX})=$ ar $(\triangle \mathrm{ACY})$.

[Hint: Join CX.]

Solution:

Given,
$A B C D$ is a trapezium with $A B \| D C$.
XY || AC
Construction,
Join CX
To prove,
$\operatorname{ar}(\mathrm{ADX})=\operatorname{ar}(\mathrm{ACY})$
Proof:
$\operatorname{ar}(\triangle \mathrm{ADX})=\operatorname{ar}(\triangle \mathrm{AXC})$ - (i) (Since they are on the same base AX and in-between the same parallels AB and CD)
Also,
$\operatorname{ar}(\triangle \mathrm{AXC})=\operatorname{ar}(\triangle \mathrm{ACY})$ - (ii) (Since they are on the same base AC and in-between the same parallels XY and AC.)
(i) and (ii),
$\operatorname{ar}(\triangle \mathrm{ADX})=\operatorname{ar}(\triangle \mathrm{ACY})$
14. In Fig.9.28, $A P\|B Q\| C R$. Prove that $\operatorname{ar}(\triangle A Q C)=\operatorname{ar}(\triangle P B R)$.

Fig. 9.28
Solution:
Given,
AP || BQ \| CR
To prove,
$\operatorname{ar}(\mathrm{AQC})=\operatorname{ar}(\mathrm{PBR})$
Proof:
$\operatorname{ar}(\triangle \mathrm{AQB})=\operatorname{ar}(\triangle \mathrm{PBQ})$ - (i) (Since they are on the same base BQ and between the same parallels AP and BQ.$)$
also,
$\operatorname{ar}(\triangle \mathrm{BQC})=\operatorname{ar}(\triangle \mathrm{BQR})-($ ii $)$ (Since they are on the same base $B Q$ and between the same parallels $B Q$ and $C R$.
Adding (i) and (ii),
$\operatorname{ar}(\triangle \mathrm{AQB})+\operatorname{ar}(\triangle \mathrm{BQC})=\operatorname{ar}(\triangle \mathrm{PBQ})+\operatorname{ar}(\triangle \mathrm{BQR})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{AQC})=\operatorname{ar}(\triangle \mathrm{PBR})$
15. Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O in such a way that $\operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)$. Prove that ABCD is a trapezium.
Solution:

Given,
$\operatorname{ar}(\triangle \mathrm{AOD})=\operatorname{ar}(\triangle \mathrm{BOC})$
To prove,
ABCD is a trapezium.
Proof:
$\operatorname{ar}(\triangle \mathrm{AOD})=\operatorname{ar}(\triangle \mathrm{BOC})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{AOD})+\operatorname{ar}(\triangle \mathrm{AOB})=\operatorname{ar}(\triangle \mathrm{BOC})+\operatorname{ar}(\triangle \mathrm{AOB})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ADB})=\operatorname{ar}(\triangle \mathrm{ACB})$
Areas of $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ACB}$ are equal. \therefore, they must lie between the same parallel lines.
$\therefore, \mathrm{AB} \| \mathrm{CD}$
$\therefore, \mathrm{ABCD}$ is a trapezium.
16. In Fig.9.29, $\operatorname{ar}(\mathrm{DRC})=\operatorname{ar}(\mathrm{DPC})$ and $\operatorname{ar}(B D P)=\operatorname{ar}(A R C)$. Show that both the quadrilaterals ABCD and DCPR are trapeziums.

Fig. 9.29

Solution:
Given,
$\operatorname{ar}(\triangle \mathrm{DRC})=\operatorname{ar}(\triangle \mathrm{DPC})$
$\operatorname{ar}(\triangle \mathrm{BDP})=\operatorname{ar}(\triangle \mathrm{ARC})$
To prove,
ABCD and DCPR are trapeziums.
Proof:
$\operatorname{ar}(\triangle \mathrm{BDP})=\operatorname{ar}(\triangle \mathrm{ARC})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{BDP})-\operatorname{ar}(\triangle \mathrm{DPC})=\operatorname{ar}(\triangle \mathrm{DRC})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{BDC})=\operatorname{ar}(\triangle \mathrm{ADC})$
$\therefore, \operatorname{ar}(\triangle \mathrm{BDC})$ and $\operatorname{ar}(\triangle \mathrm{ADC})$ are lying in-between the same parallel lines.
$\therefore, \mathrm{AB} \| \mathrm{CD}$
ABCD is a trapezium.
Similarly,
$\operatorname{ar}(\triangle \mathrm{DRC})=\operatorname{ar}(\triangle \mathrm{DPC})$.
$\therefore, \operatorname{ar}(\triangle \mathrm{DRC})$ and $\operatorname{ar}(\triangle \mathrm{DPC})$ are lying in-between the same parallel lines.
$\therefore, \mathrm{DC} \| \mathrm{PR}$
$\therefore, \mathrm{DCPR}$ is a trapezium.

EXERCISE 9.4(OPTIONAL)*

1. Parallelogram $A B C D$ and rectangle $A B E F$ are on the same base $A B$ and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.

Solution:

Given,
$\| \mathrm{gm} \mathrm{ABCD}$ and a rectangle ABEF have the same base AB and equal areas.
To prove,
The perimeter of $\| \mathrm{gm} A B C D$ is greater than the perimeter of rectangle ABEF .
Proof,
We know that the opposite sides of a\|gm and rectangle are equal.
, $\mathrm{AB}=\mathrm{DC}[\mathrm{As} \mathrm{ABCD}$ is a $\| \mathrm{gm}]$
and, $\mathrm{AB}=\mathrm{EF}[\mathrm{As} \mathrm{ABEF}$ is a rectangle $]$
, $\mathrm{DC}=\mathrm{EF} \ldots$ (i)
Adding AB on both sides, we get
$\Rightarrow \mathrm{AB}+\mathrm{DC}=\mathrm{AB}+\mathrm{EF}$
We know that the perpendicular segment is the shortest of all the segments that can be drawn to a given line from a point not lying on it.
, $\mathrm{BE}<\mathrm{BC}$ and $\mathrm{AF}<\mathrm{AD}$
$\Rightarrow \mathrm{BC}>\mathrm{BE}$ and $\mathrm{AD}>\mathrm{AF}$
$\Rightarrow \mathrm{BC}+\mathrm{AD}>\mathrm{BE}+\mathrm{AF} .$.
Adding (ii) and (iii), we get
$\mathrm{AB}+\mathrm{DC}+\mathrm{BC}+\mathrm{AD}>\mathrm{AB}+\mathrm{EF}+\mathrm{BE}+\mathrm{AF}$
$\Rightarrow \mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}>\mathrm{AB}+\mathrm{BE}+\mathrm{EF}+\mathrm{FA}$
\Rightarrow perimeter of $\| \mathrm{gm} \mathrm{ABCD}>$ perimeter of rectangle ABEF .
The perimeter of the parallelogram is greater than that of the rectangle.
Hence, proved.
2. In Fig. 9.30, D and E are two points on BC such that $\mathrm{BD}=\mathrm{DE}=\mathrm{EC}$.

Show that $\operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{AEC})$.
Can you now answer the question that you have left in the 'Introduction' of this chapter, whether the field of Budhia has been actually divided into three parts of equal area?
[Remark: Note that by taking $\mathrm{BD}=\mathrm{DE}=\mathrm{EC}$, the triangle ABC is divided into three triangles $-\mathrm{ABD}, \mathrm{ADE}$ and AEC - of equal areas. In the same way, by dividing BC into n equal parts and joining the points of division so obtained to the opposite vertex of BC, you can divide DABC into n triangles of equal areas.]

Solution:
Given,
$\mathrm{BD}=\mathrm{DE}=\mathrm{EC}$
To prove,
ar $(\triangle \mathrm{ABD})=$ ar $(\triangle \mathrm{ADE})=$ ar $(\triangle \mathrm{AEC})$
Proof,
In ($\triangle \mathrm{ABE}), \mathrm{AD}$ is median [since, $\mathrm{BD}=\mathrm{DE}$, given]
We know that the median of a triangle divides it into two parts of equal areas.
, $\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{AED})-$ (i)
Similarly,
In ($\triangle \mathrm{ADC}), \mathrm{AE}$ is median [Since $\mathrm{DE}=\mathrm{EC}$ is given]
, $\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{AEC})-(\mathrm{ii})$
From the equation (i) and (ii), we get
$\operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{AEC})$
3. In Fig. 9.31, ABCD, DCFE and ABFE are parallelograms. Show that ar (ADE) $=$ ar (BCF).

Fig. 9.31

Solution:
Given,
$\mathrm{ABCD}, \mathrm{DCFE}$ and ABFE are parallelograms
To prove,
ar $(\triangle \mathrm{ADE})=$ ar $(\triangle \mathrm{BCF})$
Proof,
In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{BCF}$,
$\mathrm{AD}=\mathrm{BC}$ [Since they are the opposite sides of the parallelogram ABCD .]
$\mathrm{DE}=\mathrm{CF}$ [Since they are the opposite sides of the parallelogram DCFE.]
$\mathrm{AE}=\mathrm{BF}$ [Since they are the opposite sides of the parallelogram ABFE.]
, $\triangle \mathrm{ADE} \cong \triangle \mathrm{BCF}$ [Using the SSS Congruence theorem.]
, $\operatorname{ar}(\triangle \mathrm{ADE})=\operatorname{ar}(\triangle \mathrm{BCF})[\mathrm{By} \mathrm{CPCT}]$
4. In Fig. 9.32, $A B C D$ is a parallelogram and $B C$ is produced to a point Q such that $A D=C Q$. If $A Q$ intersects DC at P, show that ar $(B P C)=$ ar $(D P Q)$.
[Hint: Join AC.]

Fig. 9.32
Solution:
Given:
ABCD is a parallelogram
$A D=C Q$
To prove:
$\operatorname{ar}(\triangle \mathrm{BPC})=\operatorname{ar}(\triangle \mathrm{DPQ})$
Proof:
In $\triangle \mathrm{ADP}$ and $\triangle \mathrm{QCP}$,
$\angle \mathrm{APD}=\angle \mathrm{QPC}$ [Vertically Opposite Angles]
$\angle \mathrm{ADP}=\angle \mathrm{QCP}$ [Alternate Angles]
$\mathrm{AD}=\mathrm{CQ}$ [given]
, $\triangle \mathrm{ABO} \cong \triangle \mathrm{ACD}$ [AAS congruency]
, $\mathrm{DP}=\mathrm{CP}[\mathrm{CPCT}]$
In $\triangle \mathrm{CDQ}, \mathrm{QP}$ is median. [Since, $\mathrm{DP}=\mathrm{CP}$]
The median of a triangle divides it into two parts of equal areas.
, $\operatorname{ar}(\triangle \mathrm{DPQ})=\operatorname{ar}(\triangle \mathrm{QPC})-(\mathrm{i})$
In $\triangle \mathrm{PBQ}, \mathrm{PC}$ is the median. [Since, $\mathrm{AD}=\mathrm{CQ}$ and $\mathrm{AD}=\mathrm{BC} \Rightarrow \mathrm{BC}=\mathrm{QC}$]
The median of a triangle divides it into two parts of equal areas.
, $\operatorname{ar}(\triangle \mathrm{QPC})=\operatorname{ar}(\triangle \mathrm{BPC})-$ (ii)
From the equation (i) and (ii), we get
$\operatorname{ar}(\triangle \mathrm{BPC})=\operatorname{ar}(\triangle \mathrm{DPQ})$
5. In Fig.9.33, ABC and BDE are two equilateral triangles such that D is the mid-point of BC . If AE intersects BC at F , show that

Fig. 9.33

(i) $\operatorname{ar}(\mathrm{BDE})=1 / 4$ ar (ABC)
(ii) $\operatorname{ar}($ BDE $)=1 / 2$ ar (BAE)
(iii) ar (ABC) $=2$ ar (BEC)
(iv) $\operatorname{ar}(\mathbf{B F E})=\operatorname{ar}(\mathbf{A F D})$
(v) ar (BFE) $=2$ ar (FED)
(vi) ar (FED) $=1 / 8$ ar (AFC)

Solution:
(i) Assume that G and H are the mid-points of the sides AB and AC , respectively.

Join the mid-points with line-segment GH. Here, GH is parallel to third side.
$B C$ will be half of the length of $B C$ by the mid-point theorem.

$\therefore \mathrm{GH}=1 / 2 \mathrm{BC}$ and $\mathrm{GH} \| \mathrm{BD}$
$\therefore \mathrm{GH}=\mathrm{BD}=\mathrm{DC}$ and $\mathrm{GH} \| \mathrm{BD}$ (D is the mid-point of BC)
Similarly,
$\mathrm{GD}=\mathrm{HC}=\mathrm{HA}$
$\mathrm{HD}=\mathrm{AG}=\mathrm{BG}$
$\triangle \mathrm{ABC}$ is divided into 4 equal equilateral triangles $\triangle \mathrm{BGD}, \triangle \mathrm{AGH}, \triangle \mathrm{DHC}$ and $\triangle \mathrm{GHD}$
We can say that
$\Delta \mathrm{BGD}=1 / 4 \Delta \mathrm{ABC}$
Considering $\triangle \mathrm{BDG}$ and $\triangle \mathrm{BDE}$,
BD $=\mathrm{BD}$ (Common base)
Since both triangles are equilateral triangle, we can say that
$B G=B E$
DG = DE
, $\Delta \mathrm{BDG} \cong \Delta \mathrm{BDE}$ [By SSS congruency]
, area $(\triangle \mathrm{BDG})=\operatorname{area}(\triangle \mathrm{BDE})$
ar $(\triangle \mathrm{BDE})=1 / 4$ ar $(\triangle \mathrm{ABC})$
Hence, proved.
(ii)

$\operatorname{ar}(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{AED})($ Common base DE and $\mathrm{DE} \| \mathrm{AB})$
$\operatorname{ar}(\triangle \mathrm{BDE})-\operatorname{ar}(\triangle \mathrm{FED})=\operatorname{ar}(\triangle \mathrm{AED})-\operatorname{ar}(\triangle \mathrm{FED})$
$\operatorname{ar}(\triangle \mathrm{BEF})=\operatorname{ar}(\triangle \mathrm{AFD}) \ldots$ (i)
Now,
$\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ABF})+\operatorname{ar}(\Delta \mathrm{AFD})$
$\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ABF})+\operatorname{ar}(\triangle \mathrm{BEF})[$ From equation (i)]
$\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ABE}) \ldots(\mathrm{ii})$
$A D$ is the median of $\triangle A B C$.
$\operatorname{ar}(\triangle \mathrm{ABD})=1 / 2 \operatorname{ar}(\triangle \mathrm{ABC})$
$=(4 / 2) \operatorname{ar}(\Delta \mathrm{BDE})$
$=2 \operatorname{ar}(\triangle \mathrm{BDE}) \ldots$ (iii)
From (ii) and (iii), we obtain
$2 \operatorname{ar}(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{ABE})$
$\operatorname{ar}(\mathrm{BDE})=1 / 2$ ar (BAE)
Hence, proved.
(iii) $\operatorname{ar}(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{BEC})[$ Common base BE and $\mathrm{BE} \| \mathrm{AC}]$
$\operatorname{ar}(\triangle \mathrm{ABF})+\operatorname{ar}(\triangle \mathrm{BEF})=\operatorname{ar}(\triangle \mathrm{BEC})$
From eq ${ }^{n}$ (i), we get,

```
ar(\triangleABF) + ar(\triangleAFD) =a(\triangleBEC)
ar(\triangleABD)}=\operatorname{ar}(\triangle\textrm{BEC}
1/2 ar(}\triangle\textrm{ABC})=\operatorname{ar}(\Delta\textrm{BEC}
ar(\triangleABC) = 2 ar(\triangleBEC)
```

Hence, proved.
(iv) $\triangle \mathrm{BDE}$ and $\triangle \mathrm{AED}$ lie on the same base (DE) and are in-between the parallel lines DE and AB .
$\therefore \operatorname{ar}(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{AED})$
Subtracting $\operatorname{ar}(\triangle \mathrm{FED})$ from L.H.S and R.H.S,
We get
$\therefore \operatorname{ar}(\triangle \mathrm{BDE})-\operatorname{ar}(\triangle \mathrm{FED})=\operatorname{ar}(\triangle \mathrm{AED})-\operatorname{ar}(\triangle \mathrm{FED})$
$\therefore \operatorname{ar}(\triangle \mathrm{BFE})=\operatorname{ar}(\triangle \mathrm{AFD})$
Hence, proved.
(v) Assume that h is the height of vertex E , corresponding to the side BD in $\triangle \mathrm{BDE}$.

Also, assume that H is the height of vertex A, corresponding to the side $B C$ in $\triangle A B C$.
While solving Question (i),
We saw that
$\operatorname{ar}(\triangle \mathrm{BDE})=1 / 4 \operatorname{ar}(\triangle \mathrm{ABC})$
While solving Question (iv),
We saw that
$\operatorname{ar}(\triangle \mathrm{BFE})=\operatorname{ar}(\triangle \mathrm{AFD})$
$\therefore \operatorname{ar}(\triangle \mathrm{BFE})=\operatorname{ar}(\triangle \mathrm{AFD})$
$=2 \operatorname{ar}(\triangle \mathrm{FED})$
Hence, $\operatorname{ar}(\triangle \mathrm{BFE})=2$ ar $(\triangle \mathrm{FED})$
Hence, proved.
(vi) $\operatorname{ar}(\triangle \mathrm{AFC})=\operatorname{ar}(\triangle \mathrm{AFD})+\operatorname{ar}(\triangle \mathrm{ADC})$
$=2 \operatorname{ar}(\Delta \mathrm{FED})+(1 / 2) \operatorname{ar}(\Delta \mathrm{ABC})[$ using $(\mathrm{v})]$
$=2 \operatorname{ar}(\triangle \mathrm{FED})+1 / 2[4 \operatorname{ar}(\triangle \mathrm{BDE})]$ [Using the result of Question (i)]
$=2 \operatorname{ar}(\triangle \mathrm{FED})+2 \operatorname{ar}(\triangle \mathrm{BDE})$
$\triangle \mathrm{BDE}$ and $\triangle \mathrm{AED}$ are on the same base and between same parallels.
$=2 \operatorname{ar}(\triangle \mathrm{FED})+2 \operatorname{ar}(\triangle \mathrm{AED})$
$=2 \operatorname{ar}(\triangle \mathrm{FED})+2[\operatorname{ar}(\triangle \mathrm{AFD})+\operatorname{ar}(\triangle \mathrm{FED})]$
$=2 \operatorname{ar}(\triangle \mathrm{FED})+2 \operatorname{ar}(\triangle \mathrm{AFD})+2 \operatorname{ar}(\triangle \mathrm{FED})$ [From question (viii)]
$=4 \operatorname{ar}(\triangle \mathrm{FED})+4 \operatorname{ar}(\triangle \mathrm{FED})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{AFC})=8 \operatorname{ar}(\triangle \mathrm{FED})$
$\Rightarrow \operatorname{ar}(\Delta \mathrm{FED})=(1 / 8) \operatorname{ar}(\Delta \mathrm{AFC})$
Hence, proved.
6. Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect each other at P. Show that $\operatorname{ar}(\mathrm{APB}) \times \operatorname{ar}(\mathrm{CPD})=\operatorname{ar}(\mathrm{APD}) \times \operatorname{ar}(\mathrm{BPC})$.
[Hint: From A and C, draw perpendiculars to BD.]

Solution:

Given:

The diagonal AC and BD of the quadrilateral ABCD intersect each other at point E .
Construction:
From A, draw AM perpendicular to BD.
From C , draw CN perpendicular to BD .

To prove,
$\operatorname{ar}(\triangle \mathrm{AED}) \operatorname{ar}(\triangle \mathrm{BEC})=\operatorname{ar}(\triangle \mathrm{ABE}) \times \operatorname{ar}(\triangle \mathrm{CDE})$
Proof,
$\operatorname{ar}(\triangle \mathrm{ABE})=1 / 2 \times \mathrm{BE} \times \mathrm{AM}$
$\operatorname{ar}(\triangle \mathrm{AED})=1 / 2 \times \mathrm{DE} \times \mathrm{AM}$.
Dividing eq. ii by i , we get

$$
\frac{\operatorname{ar}(\triangle \mathrm{AED})}{\operatorname{ar}(\triangle \mathrm{ABE})}=\frac{\frac{1}{2} \times \mathrm{DE} \times \mathrm{AM}}{\frac{1}{2} \times \mathrm{BE} \times \mathrm{AM}}
$$

$\operatorname{ar}(\mathrm{AED}) / \operatorname{ar}(\mathrm{ABE})=\mathrm{DE} / \mathrm{BE}$.
Similarly,
$\operatorname{ar}(\mathrm{CDE}) / \operatorname{ar}(\mathrm{BEC})=\mathrm{DE} / \mathrm{BE}$
From eq. (iii) and (iv), we get
$\operatorname{ar}(\mathrm{AED}) / \operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{CDE}) / \operatorname{ar}(\mathrm{BEC})$
, $\operatorname{ar}(\triangle \mathrm{AED}) \times \operatorname{ar}(\triangle \mathrm{BEC})=\operatorname{ar}(\triangle \mathrm{ABE}) \times \operatorname{ar}(\triangle \mathrm{CDE})$
Hence, proved.
7. P and Q are, respectively, the mid-points of sides $A B$ and $B C$ of a triangle $A B C$ and R is the mid-point of $A P$. Show that
(i) $\operatorname{ar}($ PRQ $)=1 / 2$ ar (ARC)
(ii) $\operatorname{ar}(\operatorname{RQC})=(3 / 8)$ ar $(\mathbf{A B C})$
(iii) $\operatorname{ar}(\mathbf{P B Q})=$ ar $(\mathbf{A R C})$

Solution:
(i)

We know that the median divides the triangle into two triangles of equal area.
PC is the median of ABC .
$\operatorname{Ar}(\triangle \mathrm{BPC})=\operatorname{ar}(\triangle \mathrm{APC})$
RC is the median of APC.
$\operatorname{Ar}(\triangle \mathrm{ARC})=1 / 2$ ar $(\triangle \mathrm{APC})$
PQ is the median of BPC.
$\operatorname{Ar}(\triangle \mathrm{PQC})=1 / 2 \operatorname{ar}(\triangle \mathrm{BPC})$
From eq. (i) and (iii), we get
ar $(\triangle \mathrm{PQC})=1 / 2$ ar $(\triangle \mathrm{APC})$
From eq. (ii) and (iv), we get
ar $(\triangle \mathrm{PQC})=\operatorname{ar}(\triangle \mathrm{ARC})$
P and Q are the mid-points of $A B$ and $B C$, respectively [given]
$\mathrm{PQ} \| \mathrm{AC}$
and, $\mathrm{PA}=1 / 2 \mathrm{AC}$
Triangles between the same parallel are equal in area, and we get
ar $(\triangle \mathrm{APQ})=$ ar $(\triangle \mathrm{PQC})$ \qquad
From eq. (v) and (vi), we obtain
ar $(\triangle \mathrm{APQ})=$ ar $(\triangle \mathrm{ARC})$
R is the mid-point of AP.
, RQ is the median of APQ.
$\operatorname{Ar}(\triangle \mathrm{PRQ})=1 / 2 \operatorname{ar}(\triangle \mathrm{APQ})$ \qquad .(viii)

From (vii) and (viii), we get
$\operatorname{ar}(\triangle \mathrm{PRQ})=1 / 2 \operatorname{ar}(\triangle \mathrm{ARC})$
Hence, proved.
(ii) PQ is the median of $\triangle \mathrm{BPC}$.
$\operatorname{ar}(\triangle \mathrm{PQC})=1 / 2 \operatorname{ar}(\triangle \mathrm{BPC})$
$=(1 / 2) \times(1 / 2) \operatorname{ar}(\Delta \mathrm{ABC})$
$=1 / 4 \operatorname{ar}(\triangle \mathrm{ABC})$ (ix)

Also,
$\operatorname{ar}(\triangle \mathrm{PRC})=1 / 2 \operatorname{ar}(\triangle \mathrm{APC})[$ From (iv)]
$\operatorname{ar}(\triangle \mathrm{PRC})=(1 / 2) \times(1 / 2) \operatorname{ar}(\mathrm{ABC})$
$=1 / 4 \operatorname{ar}(\Delta \mathrm{ABC})$
Add eq. (ix) and (x), we get
$\operatorname{ar}(\Delta \mathrm{PQC})+\operatorname{ar}(\Delta \mathrm{PRC})=(1 / 4) \times(1 / 4) \operatorname{ar}(\Delta \mathrm{ABC})$
$\operatorname{ar}($ quad. PQCR$)=1 / 4 \operatorname{ar}(\triangle \mathrm{ABC})$ \qquad
Subtracting ar ($\triangle \mathrm{PRQ})$ from L.H.S and R.H.S,
ar $($ quad. $P Q C R)-\operatorname{ar}(\triangle P R Q)=1 / 2$ ar $(\triangle \mathrm{ABC})-\operatorname{ar}(\triangle \mathrm{PRQ})$
$\operatorname{ar}(\triangle \mathrm{RQC})=1 / 2 \operatorname{ar}(\triangle \mathrm{ABC})-1 / 2$ ar ($\triangle \mathrm{ARC})$ [From result (i)]
ar $(\triangle \mathrm{ARC})=1 / 2$ ar $(\triangle \mathrm{ABC})-(1 / 2) \times(1 / 2) \operatorname{ar}(\triangle \mathrm{APC})$
$\operatorname{ar}(\triangle \mathrm{RQC})=1 / 2 \operatorname{ar}(\triangle \mathrm{ABC})-(1 / 4) \operatorname{ar}(\triangle \mathrm{APC})$
$\operatorname{ar}(\triangle \mathrm{RQC})=1 / 2 \operatorname{ar}(\triangle \mathrm{ABC})-(1 / 4) \times(1 / 2) \operatorname{ar}(\triangle \mathrm{ABC})$ [As, PC is median of $\triangle \mathrm{ABC}$]
$\operatorname{ar}(\triangle \mathrm{RQC})=1 / 2 \operatorname{ar}(\triangle \mathrm{ABC})-(1 / 8) \operatorname{ar}(\Delta \mathrm{ABC})$
$\operatorname{ar}(\Delta \mathrm{RQC})=[(1 / 2)-(1 / 8)] \operatorname{ar}(\Delta \mathrm{ABC})$
$\operatorname{ar}(\triangle \mathrm{RQC})=(3 / 8) \operatorname{ar}(\triangle \mathrm{ABC})$
(iii) $\operatorname{ar}(\triangle \mathrm{PRQ})=1 / 2 \operatorname{ar}(\triangle \mathrm{ARC})[$ From result (i)]
$2 \operatorname{ar}(\triangle \mathrm{PRQ})=\operatorname{ar}(\triangle \mathrm{ARC})$ \qquad
$\operatorname{ar}(\triangle \mathrm{PRQ})=1 / 2 \operatorname{ar}(\triangle \mathrm{APQ})[\mathrm{RQ}$ is the median of APQ$]$ \qquad (xiii)

But, we know that
$\operatorname{ar}(\triangle \mathrm{APQ})=\operatorname{ar}(\triangle \mathrm{PQC})[$ From the reason mentioned in eq. (vi) $]$ \qquad (xiv)

From eq. (xiii) and (xiv), we get
$\operatorname{ar}(\triangle \mathrm{PRQ})=1 / 2 \operatorname{ar}(\triangle \mathrm{PQC})$ \qquad (xv)

At the same time, $\operatorname{ar}(\triangle \mathrm{BPQ})=\operatorname{ar}(\triangle \mathrm{PQC})[\mathrm{PQ}$ is the median of $\triangle \mathrm{BPC}]$ \qquad (xvi)

From eq. (xv) and (xvi), we get
$\operatorname{ar}(\triangle \mathrm{PRQ})=1 / 2 \operatorname{ar}(\triangle \mathrm{BPQ})$ \qquad (xvii)

From eq. (xii) and (xvii), we get
$2 \times(1 / 2) \operatorname{ar}(\Delta \mathrm{BPQ})=\operatorname{ar}(\triangle \mathrm{ARC})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{BPQ})=\operatorname{ar}(\triangle \mathrm{ARC})$
Hence, proved.
8. In Fig. 9.34, ABC is a right triangle right angled at A . $\mathrm{BCED}, \mathrm{ACFG}$ and ABMN are squares on the sides BC , $C A$ and $A B$, respectively. Line segment $A X{ }^{\wedge} D E$ meets $B C$ at Y. Show that:

Fig. 9.34
(i) $\triangle \mathrm{MBC} \cong \triangle \mathrm{ABD}$
(ii) $\operatorname{ar}(\mathbf{B Y X D})=2 \operatorname{ar}(\mathbf{M B C})$
(iii) $\operatorname{ar}(\mathbf{B Y X D})=\operatorname{ar}(\mathbf{A B M N})$
(iv) $\triangle \mathrm{FCB} \cong \triangle \mathrm{ACE}$
(v) $\operatorname{ar}(\mathbf{C Y X E})=2 \operatorname{ar}(\mathbf{F C B})$
(vi) $\operatorname{ar}(\mathrm{CYXE})=\operatorname{ar}(\mathrm{ACFG})$
(vii) $\operatorname{ar}(\mathbf{B C E D})=\operatorname{ar}(\mathrm{ABMN})+\operatorname{ar}(\mathrm{ACFG})$

Note: Result (vii) is the famous Theorem of Pythagoras. You shall learn a simpler proof of this theorem in Class X.

Solution:
(i) We know that each angle of a square is 90°. Hence, $\angle \mathrm{ABM}=\angle \mathrm{DBC}=90^{\circ}$
$\therefore \angle \mathrm{ABM}+\angle \mathrm{ABC}=\angle \mathrm{DBC}+\angle \mathrm{ABC}$
$\therefore \angle \mathrm{MBC}=\angle \mathrm{ABD}$
In $\triangle \mathrm{MBC}$ and $\triangle \mathrm{ABD}$,
$\angle \mathrm{MBC}=\angle \mathrm{ABD}$ (Proved above)
$\mathrm{MB}=\mathrm{AB}$ (Sides of square ABMN)
$\mathrm{BC}=\mathrm{BD}$ (Sides of square BCED)
$\therefore \triangle \mathrm{MBC} \cong \triangle \mathrm{ABD}$ (SAS congruency)
(ii) We have
$\Delta \mathrm{MBC} \cong \triangle \mathrm{ABD}$
$\therefore \operatorname{ar}(\triangle \mathrm{MBC})=$ ar $(\triangle \mathrm{ABD}) \ldots$ (i)
It is given that $\mathrm{AX} \perp \mathrm{DE}$ and $\mathrm{BD} \perp \mathrm{DE}$ (Adjacent sides of square BDEC)
$\therefore \mathrm{BD} \| \mathrm{AX}$ (Two lines perpendicular to same line are parallel to each other.)
$\triangle A B D$ and parallelogram BYXD are on the same base $B D$ and between the same parallels $B D$ and $A X$.
$\operatorname{Area}(\triangle \mathrm{YXD})=2 \operatorname{Area}(\triangle \mathrm{MBC})[$ From equation (i)] ... (ii)
(iii) $\triangle \mathrm{MBC}$ and parallelogram ABMN are lying on the same base MB and between the same parallels MB and NC .

2 ar $(\triangle \mathrm{MBC})=\operatorname{ar}(\mathrm{ABMN})$
ar $(\triangle \mathrm{YXD})=$ ar (ABMN) [From equation (ii)] ..
(iv) We know that each angle of a square is 90°.
$\therefore \angle \mathrm{FCA}=\angle \mathrm{BCE}=90^{\circ}$
$\therefore \angle \mathrm{FCA}+\angle \mathrm{ACB}=\angle \mathrm{BCE}+\angle \mathrm{ACB}$
$\therefore \angle \mathrm{FCB}=\angle \mathrm{ACE}$
In $\triangle \mathrm{FCB}$ and $\triangle \mathrm{ACE}$,
$\angle \mathrm{FCB}=\angle \mathrm{ACE}$
$\mathrm{FC}=\mathrm{AC}$ (Sides of square ACFG)
$C B=C E$ (Sides of square BCED)
$\Delta \mathrm{FCB} \cong \triangle \mathrm{ACE}$ (SAS congruency)
(v) $\mathrm{AX} \perp \mathrm{DE}$ and $\mathrm{CE} \perp \mathrm{DE}$ (Adjacent sides of square BDEC) [given]

Hence,
$\mathrm{CE} \| \mathrm{AX}$ (Two lines perpendicular to the same line are parallel to each other.)

Consider BACE and parallelogram CYXE.
BACE and parallelogram CYXE are on the same base CE and between the same parallels CE and AX.
$\therefore \operatorname{ar}(\triangle Y X E)=2 \operatorname{ar}(\triangle A C E) \quad \ldots$ (iv)
We had proved that
$\therefore \triangle \mathrm{FCB} \cong \triangle \mathrm{ACE}$
ar $(\triangle \mathrm{FCB}) \cong$ ar ($\triangle \mathrm{ACE}) \ldots$ (v)
From equations (iv) and (v), we get
ar (CYXE) $=2$ ar (\triangle FCB) \ldots (vi)
(vi) Consider BFCB and parallelogram ACFG.

BFCB and parallelogram ACFG lie on the same base CF and between the same parallels CF and BG.
\therefore ar $(\mathrm{ACFG})=2$ ar $(\triangle \mathrm{FCB})$
\therefore ar $(\mathrm{ACFG})=$ ar (CYXE) $[$ From equation (vi)]
(vii) From the figure, we can observe that
ar $(B C E D)=$ ar $(B Y X D)+$ ar (CYXE)
\therefore ar $(B C E D)=$ ar $(A B M N)+$ ar $(A C F G)$ [From equations (iii) and (vii)]

