EXERCISE: 10.4

1. Two circles of radii 5 cm and 3 cm intersect at two points, and the distance between their centres is 4 cm . Find the length of the common chord.

Solution:

The perpendicular bisector of the common chord passes through the centres of both circles.

As the circles intersect at two points, we can construct the above figure.
Consider AB as the common chord and O and O^{\prime} as the centres of the circles.
$\mathrm{O}^{\prime} \mathrm{A}=5 \mathrm{~cm}$
$\mathrm{OA}=3 \mathrm{~cm}$
$\mathrm{OO}^{\prime}=4 \mathrm{~cm}$ [Distance between centres is 4 cm .]
As the radius of the bigger circle is more than the distance between the two centres, we know that the centre of the smaller circle lies inside the bigger circle.

The perpendicular bisector of AB is OO^{\prime}.
$\mathrm{OA}=\mathrm{OB}=3 \mathrm{~cm}$
As O is the midpoint of AB
$\mathrm{AB}=3 \mathrm{~cm}+3 \mathrm{~cm}=6 \mathrm{~cm}$
The length of the common chord is 6 cm .
It is clear that the common chord is the diameter of the smaller circle.
2. If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.

Solution:

Let $A B$ and $C D$ be two equal cords (i.e., $A B=C D$). In the above question, it is given that $A B$ and $C D$ intersect at a point, say, E.

It is now to be proven that the line segments $\mathrm{AE}=\mathrm{DE}$ and $\mathrm{CE}=\mathrm{BE}$

Construction Steps

Step 1: From the centre of the circle, draw a perpendicular to $A B$, i.e., $O M \perp A B$.
Step 2: Similarly, draw $O N \perp C D$.
Step 3: Join OE.
Now, the diagram is as follows:

Proof:
From the diagram, it is seen that OM bisects AB , and so $\mathrm{OM} \perp \mathrm{AB}$
Similarly, ON bisects CD , and so $\mathrm{ON} \perp \mathrm{CD}$.
It is known that $\mathrm{AB}=\mathrm{CD}$. So,
$A M=N D-(i)$
and $\mathrm{MB}=\mathrm{CN}$ - (ii)
Now, triangles $\triangle \mathrm{OME}$ and $\triangle \mathrm{ONE}$ are similar by RHS congruency, since
$\angle \mathrm{OME}=\angle \mathrm{ONE}$ (They are perpendiculars.)
$\mathrm{OE}=\mathrm{OE}$ (It is the common side.)
$\mathrm{OM}=\mathrm{ON}(\mathrm{AB}$ and CD are equal, and so they are equidistant from the centre.)
$\therefore \triangle \mathrm{OME} \cong \triangle \mathrm{ONE}$
$\mathrm{ME}=\mathrm{EN}($ by CPCT $)-$ (iii)
Now, from equations (i) and (ii), we get
$\mathrm{AM}+\mathrm{ME}=\mathrm{ND}+\mathrm{EN}$
So, $\mathrm{AE}=\mathrm{ED}$
Now from equations (ii) and (iii), we get
MB-ME $=\mathrm{CN}-\mathrm{EN}$
So, $\mathrm{EB}=\mathrm{CE}$ (Hence, proved)
3. If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.

Solution:

From the question, we know the following:
(i) AB and CD are 2 chords which are intersecting at point E .
(ii) PQ is the diameter of the circle.
(iii) $\mathrm{AB}=\mathrm{CD}$.

Now, we will have to prove that $\angle \mathrm{BEQ}=\angle \mathrm{CEQ}$
For this, the following construction has to be done.

Construction:

Draw two perpendiculars are drawn as $\mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{ON} \perp \mathrm{D}$. Now, join OE . The constructed diagram will look as follows:

Now, consider the triangles $\triangle \mathrm{OEM}$ and $\triangle \mathrm{OEN}$.
Here,
(i) $\mathrm{OM}=\mathrm{ON}$ [The equal chords are always equidistant from the centre.]
(ii) $\mathrm{OE}=\mathrm{OE}$ [It is the common side.]
(iii) $\angle \mathrm{OME}=\angle \mathrm{ONE}$ [These are the perpendiculars.]

So, by RHS congruency criterion, $\triangle \mathrm{OEM} \cong \triangle \mathrm{OEN}$.
Hence, by the CPCT rule, $\angle \mathrm{MEO}=\angle \mathrm{NEO}$
$\therefore \angle \mathrm{BEQ}=\angle \mathrm{CEQ}($ Hence, proved $)$
4. If a line intersects two concentric circles (circles with the same centre) with centre O at A, B, C and D, prove that $\mathrm{AB}=\mathrm{CD}$ (see Fig. 10.25).

Fig. 10.25

Solution:

The given image is as follows:

Fig. 10.25

First, draw a line segment from O to $A D$, such that $O M \perp A D$.
So, now OM is bisecting AD since $\mathrm{OM} \perp \mathrm{AD}$.
Therefore, $\mathrm{AM}=\mathrm{MD}-$ (i)
Also, since $\mathrm{OM} \perp \mathrm{BC}, \mathrm{OM}$ bisects BC .
Therefore, $\mathrm{BM}=\mathrm{MC}-$ (ii)
From equation (i) and equation (ii),
$\mathrm{AM}-\mathrm{BM}=\mathrm{MD}-\mathrm{MC}$
$\therefore \mathrm{AB}=\mathrm{CD}$
5. Three girls, Reshma, Salma and Mandip, are playing a game by standing on a circle of radius 5 m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, and Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is $\mathbf{6 m}$ each, what is the distance between Reshma and Mandip?

Solution:

Let the positions of Reshma, Salma and Mandip be represented as A, B and C, respectively.
From the question, we know that $\mathrm{AB}=\mathrm{BC}=6 \mathrm{~cm}$
So, the radius of the circle, i.e., $\mathrm{OA}=5 \mathrm{~cm}$

Now, draw a perpendicular $\mathrm{BM} \perp \mathrm{AC}$.
Since $A B=B C, A B C$ can be considered an isosceles triangle. M is the mid-point of $A C . B M$ is the perpendicular bisector of AC , and thus it passes through the centre of the circle.

Now,
let $\mathrm{AM}=\mathrm{y}$ and
$\mathrm{OM}=\mathrm{x}$
So, BM will be $=(5-x)$.

By applying the Pythagorean theorem in $\triangle \mathrm{OAM}$, we get
$\mathrm{OA}^{2}=\mathrm{OM}^{2}+\mathrm{AM}^{2}$
$\Rightarrow 5^{2}=x^{2}+y^{2}-$ (i)
Again, by applying the Pythagorean theorem in $\triangle \mathrm{AMB}$,
$\mathrm{AB}^{2}=\mathrm{BM}^{2}+\mathrm{AM}^{2}$
$\Rightarrow 6^{2}=(5-x)^{2}+y^{2}-$ (ii)

Subtracting equation (i) from equation (ii), we get
$36-25=(5-x)^{2}+y^{2}-x^{2}-y^{2}$
Now, solving this equation, we get the value of x as
$x=7 / 5$

Substituting the value of x in equation (i), we get
$\mathrm{y}^{2}+(49 / 25)=25$
$\Rightarrow \mathrm{y}^{2}=25-(49 / 25)$
Solving it, we get the value of y as
$y=24 / 5$
Thus,
$\mathrm{AC}=2 \times \mathrm{AM}$
$=2 x y$
$=2 \times(24 / 5) \mathrm{m}$
$\mathrm{AC}=9.6 \mathrm{~m}$
So, the distance between Reshma and Mandip is 9.6 m .
6. A circular park of radius 20 m is situated in a colony. Three boys, Ankur, Syed and David, are sitting at equal distances on its boundary, each having a toy telephone in his hands to talk to each other. Find the length of the string of each phone.

Solution:

First, draw a diagram according to the given statements. The diagram will look as follows:

Here, the positions of Ankur, Syed and David are represented as A, B and C, respectively. Since they are sitting at equal distances, the triangle ABC will form an equilateral triangle.
$A D \perp B C$ is drawn. Now, $A D$ is the median of $\triangle A B C$, and it passes through the centre O.
Also, O is the centroid of the $\triangle \mathrm{ABC} . \mathrm{OA}$ is the radius of the triangle.
$\mathrm{OA}=2 / 3 \mathrm{AD}$
Let the side of a triangle a metres, then $\mathrm{BD}=\mathrm{a} / 2 \mathrm{~m}$.

Applying Pythagoras' theorem in $\triangle \mathrm{ABD}$,
$\mathrm{AB}^{2}=\mathrm{BD}^{2}+\mathrm{AD}^{2}$
$\Rightarrow \mathrm{AD}^{2}=\mathrm{AB}^{2}-\mathrm{BD}^{2}$
$\Rightarrow \mathrm{AD}^{2}=\mathrm{a}^{2}-(\mathrm{a} / 2)^{2}$
$\Rightarrow \mathrm{AD}^{2}=3 \mathrm{a}^{2} / 4$
$\Rightarrow A D=\sqrt{ } 3 \mathrm{a} / 2$
$\mathrm{OA}=2 / 3 \mathrm{AD}$
$20 \mathrm{~m}=2 / 3 \times \sqrt{ } 3 \mathrm{a} / 2$
$a=20 \sqrt{ } 3 \mathrm{~m}$
So, the length of the string of the toy is $20 \sqrt{3} \mathrm{~m}$.

