EXERCISE 11.1

1. Construct an angle of 90° at the initial point of a given ray and justify the construction.

Construction Procedure:
To construct an angle 90°, follow the given steps:

1. Draw a ray OA.
2. Take O as a centre with any radius, and draw an arc DCB that cuts OA at B .
3. With B as a centre with the same radius, mark a point C on the $\operatorname{arc} \mathrm{DCB}$.
4. With C as a centre and the same radius, mark a point D on the $\operatorname{arc} \mathrm{DCB}$.
5. Take C and D as the centres, and draw two arcs which intersect each other with the same radius at P .
6. Finally, the ray OP is joined, which makes an angle of 90° with OA .

Justification
To prove $\angle \mathrm{POA}=90^{\circ}$
In order to prove this, draw a dotted line from the point O to C and O to D , and the angles formed are:

From the construction, it is observed that
$\mathrm{OB}=\mathrm{BC}=\mathrm{OC}$
Therefore, OBC is an equilateral triangle

So that, $\angle \mathrm{BOC}=60^{\circ}$.
Similarly,
$\mathrm{OD}=\mathrm{DC}=\mathrm{OC}$
Therefore, DOC is an equilateral triangle
So that, $\angle \mathrm{DOC}=60^{\circ}$.
From SSS triangle congruence rule,
$\triangle \mathrm{OBC} \cong \mathrm{OCD}$
So, $\angle \mathrm{BOC}=\angle \mathrm{DOC}$ [By C.P.C.T]
Therefore, $\angle \mathrm{COP}=1 / 2 \angle \mathrm{DOC}=1 / 2\left(60^{\circ}\right)$.
$\angle \mathrm{COP}=30^{\circ}$
To find the $\angle \mathrm{POA}=90^{\circ}$:
$\angle \mathrm{POA}=\angle \mathrm{BOC}+\angle \mathrm{COP}$
$\angle \mathrm{POA}=60^{\circ}+30^{\circ}$
$\angle \mathrm{POA}=90^{\circ}$
Hence, justified.
2. Construct an angle of 45° at the initial point of a given ray and justify the construction.

Construction Procedure:

1. Draw a ray OA.
2. Take O as a centre with any radius, draw an arc DCB that cuts OA at B .
3. With B as a centre with the same radius, mark a point C on the $\operatorname{arc} D C B$.
4. With C as a centre and the same radius, mark a point D on the $\operatorname{arc} \mathrm{DCB}$.
5. Take C and D as the centres, and draw two arcs which intersect each other with the same radius at P .
6. Finally, the ray OP is joined, which makes an angle of 90° with OA.
7. Take B and Q as the centres, and draw the perpendicular bisector which intersects at the point R
8. Draw a line that joins the points O and R
9. So, the angle formed $\angle \mathrm{ROA}=45^{\circ}$

Justification
From the construction,
$\angle \mathrm{POA}=90^{\circ}$
The perpendicular bisector from points B and Q divides the $\angle \mathrm{POA}$ into two halves. So it becomes
$\angle \mathrm{ROA}=1 / 2 \angle \mathrm{POA}$
$\angle \mathrm{ROA}=(1 / 2) \times 90^{\circ}=45^{\circ}$
Hence, justified

3. Construct the angles of the following measurements:

(i) 30°
(ii) $22 \frac{1^{\circ}}{2}$
(iii) 15°

Solution:
(i) 30°

Construction Procedure:

1. Draw a ray OA
2. Take O as a centre with any radius, and draw an arc BC which cuts OA at B .
3. With B and C as centres, draw two arcs which intersect each other at point E, and the perpendicular bisector is drawn.
4. Thus, $\angle \mathrm{EOA}$ is the required angle making 30° with OA.

(ii) $22 \frac{1^{\circ}}{2}$

Construction Procedure:

1. Draw an angle $\angle \mathrm{POA}=90^{\circ}$.
2. Take O as a centre with any radius, and draw an arc $B C$ which cuts $O A$ at B and $O P$ at Q
3. Now, draw the bisector from points B and Q, where it intersects at the point R such that it makes an angle $\angle R O A=$ 45°.
4. Again, $\angle \mathrm{ROA}$ is bisected such that $\angle \mathrm{TOA}$ is formed, which makes an angle of 22.5° with OA

(iii) 15°

Construction Procedure:

1. An angle $\angle \mathrm{DOA}=60^{\circ}$ is drawn.
2. Take O as the centre with any radius, and draw an arc $B C$ which cuts $O A$ at B and $O D$ at C
3. Now, draw the bisector from points B and C, where it intersects at point E such that it makes an angle $\angle E O A=30^{\circ}$.
4. Again, $\angle \mathrm{EOA}$ is bisected such that $\angle \mathrm{FOA}$ is formed, which makes an angle of 15° with OA.
5. Thus, $\angle \mathrm{FOA}$ is the required angle making 15° with OA .

6. Construct the following angles and verify by measuring them with a protractor:
(i) 75° (ii) 105° (iii) 135°

Solution:
(i) 75°

Construction Procedure:

1. A ray OA is drawn.
2. With O as the centre, draw an arc of any radius and intersect at point B on the ray $O A$.
3. With B as the centre, draw an $\operatorname{arc} \mathrm{C}$, and with C as the centre, draw an $\operatorname{arc} \mathrm{D}$.
4. With D and C as the centres, draw an arc that intersects at point P .
5. Join points O and P .
6. The point that the arc intersects the ray OP is taken as Q .
7. With Q and C as the centres, draw an arc that intersects at point R .
8. Join points O and R .
9. Thus, $\angle \mathrm{AOE}$ is the required angle making 75° with OA .

(ii) 105°

Construction Procedure:

1. A ray OA is drawn.
2. With O as the centre, draw an arc of any radius and intersect at point B on the ray $O A$.
3. With B as the centre, draw an $\operatorname{arc} \mathrm{C}$, and with C as the centre, draw an arc D .
4. With D and C as the centres, draw an arc that intersects at point P .
5. Join the points O and P
6. The point that the arc intersects the ray OP is taken as Q .
7. With Q and D as the centres, draw an arc that intersects at point R .
8. Join points O and R .
9. Thus, $\angle \mathrm{AOR}$ is the required angle making 105° with OA.

(iii) 135°

Construction Procedure:

1. Draw a line AOA^{6}
2. Draw an arc of any radius that cuts the line AOA^{6} at points B and $\mathrm{B}^{\text {6 }}$
3. With B as the centre, draw an arc of the same radius at point C.
4. With C as the centre, draw an arc of the same radius at point D .
5. With D and C as the centres, draw an arc that intersects at point P.
6. Join OP.
7. The point that the arc intersects the ray OP is taken as Q , and it forms an angle of 90°.
8. With B^{6} and Q as the centre, draw an arc that intersects at point R .
9. Thus, $\angle \mathrm{AOR}$ is the required angle making 135° with OA .

10. Construct an equilateral triangle, given its side and justify the construction.

Construction Procedure:

1. Let us draw a line segment $\mathrm{AB}=4 \mathrm{~cm}$.
2. With A and B as centres, draw two arcs on the line segment $A B$ and note the point as D and E.
3. With D and E as centres, draw the arcs that cut the previous arc respectively that forms an angle of 60° each.
4. Now, draw the lines from A and B that are extended to meet each other at point C.
5. Therefore, ABC is the required triangle.

Justification:
From the construction, it is observed that,
$A B=4 \mathrm{~cm}, \angle \mathrm{~A}=60^{\circ}$ and $\angle \mathrm{B}=60^{\circ}$
We know that the sum of the interior angles of a triangle is equal to 180°
$\angle A+\angle B+\angle C=180^{\circ}$
Substitute the values
$\Rightarrow 60^{\circ}+60^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 120^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \angle \mathrm{C}=60^{\circ}$
While measuring the sides, we get,
$B C=C A=4 \mathrm{~cm}$ (Sides opposite to equal angles are equal)
$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=4 \mathrm{~cm}$
$\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$
Hence, justified.

