EXERCISE: 12.1

1. A traffic signal board, indicating 'SCHOOL AHEAD', is an equilateral triangle with side ' a '. Find the area of the signal board, using Heron's formula. If its perimeter is 180 cm , what will be the area of the signal board?

Solution:

Given,
Side of the signal board $=\mathrm{a}$
Perimeter of the signal board $=3 \mathrm{a}=180 \mathrm{~cm}$
$\therefore \mathrm{a}=60 \mathrm{~cm}$

Semi perimeter of the signal board $(s)=3 \mathrm{a} / 2$
By using Heron's formula,
Area of the triangular signal board will be $=$

$$
\begin{aligned}
& \sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{(3 \mathrm{a} / 2)(3 \mathrm{a} / 2-\mathrm{a})(3 \mathrm{a} / 2-a)(3 \mathrm{a} / 2-\mathrm{a})} \\
& =\sqrt{3 \mathrm{a} / 2 \times \mathrm{a} / 2 \times \mathrm{a} / 2 \times \mathrm{a} / 2} \\
& =\sqrt{3 \mathrm{a}^{4} / 16} \\
& =\sqrt{3} \mathrm{a}^{2} / 4 \\
& =\sqrt{3} / 4 \times 60 \times 60=900 \sqrt{3} \mathrm{~cm}^{2}
\end{aligned}
$$

2. The triangular side walls of a flyover have been used for advertisements. The sides of the walls are $\mathbf{1 2 2} \mathbf{~ m , ~} 22$ m and 120 m (see Fig. 12.9). The advertisements yield an earning of $₹ 5000$ per m^{2} per year. A company hired one of its walls for 3 months. How much rent did it pay?

Fig. 12.9

Solution:

The sides of the triangle ABC are $122 \mathrm{~m}, 22 \mathrm{~m}$ and 120 m respectively.

Now, the perimeter will be $(122+22+120)=264 \mathrm{~m}$
Also, the semi perimeter $(\mathrm{s})=264 / 2=132 \mathrm{~m}$
Using Heron's formula,

Area of the triangle $=$
$\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{132(132-122)(132-22)(132-120)} \mathrm{m}^{2}$
$=\sqrt{132 \times 10 \times 110 \times 12} \mathrm{~m}^{2}$
$=1320 \mathrm{~m}^{2}$

We know that the rent of advertising per year $=₹ 5000$ per m^{2}
\therefore The rent of one wall for 3 months $=$ Rs. $(1320 \times 5000 \times 3) / 12=$ Rs. 1650000
3. There is a slide in a park. One of its side walls has been painted in some colour with a message "KEEP THE PARK GREEN AND CLEAN" (see Fig. 12.10). If the sides of the wall are $15 \mathrm{~m}, 11 \mathrm{~m}$ and $\mathbf{6} \mathrm{m}$, find the area painted in colour.

Fig. 12,10

Solution:

It is given that the sides of the wall as $15 \mathrm{~m}, 11 \mathrm{~m}$ and 6 m .
So, the semi perimeter of triangular wall $(\mathrm{s})=(15+11+6) / 2 \mathrm{~m}=16 \mathrm{~m}$
Using Heron's formula,
Area of the message $=$
$\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{ }[16(16-15)(16-11)(16-6)] \mathrm{m}^{2}$
$=\sqrt{ }[16 \times 1 \times 5 \times 10] \mathrm{m}^{2}=\sqrt{ } 800 \mathrm{~m}^{2}$
$=20 \sqrt{ } 2 \mathrm{~m}^{2}$
4. Find the area of a triangle two sides of which are 18 cm and 10 cm and the perimeter is 42 cm .

Solution:

Assume the third side of the triangle to be " x ".
Now, the three sides of the triangle are $18 \mathrm{~cm}, 10 \mathrm{~cm}$, and " x " cm
It is given that the perimeter of the triangle $=42 \mathrm{~cm}$
So, $x=42-(18+10) \mathrm{cm}=14 \mathrm{~cm}$
\therefore The semi perimeter of triangle $=42 / 2=21 \mathrm{~cm}$
Using Heron's formula,
Area of the triangle,
$=$
$\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{ }[21(21-18)(21-10)(21-14)] \mathrm{cm}^{2}$
$=\sqrt{ }[21 \times 3 \times 11 \times 7] \mathrm{m}^{2}$
$=21 \sqrt{ } 11 \mathrm{~cm}^{2}$
5. Sides of a triangle are in the ratio of $12: 17: 25$ and its perimeter is 540 cm . Find its area.

Solution:

The ratio of the sides of the triangle are given as $12: 17: 25$
Now, let the common ratio between the sides of the triangle be " x "
\therefore The sides are $12 \mathrm{x}, 17 \mathrm{x}$ and 25 x
It is also given that the perimeter of the triangle $=540 \mathrm{~cm}$
$12 \mathrm{x}+17 \mathrm{x}+25 \mathrm{x}=540 \mathrm{~cm}$
$54 \mathrm{x}=540 \mathrm{~cm}$
So, $x=10$
Now, the sides of triangle are $120 \mathrm{~cm}, 170 \mathrm{~cm}, 250 \mathrm{~cm}$.

So, the semi perimeter of the triangle $(\mathrm{s})=540 / 2=270 \mathrm{~cm}$
Using Heron's formula,
Area of the triangle
$=\sqrt{s(s-a)(s-b)(s-c)}$
$=[\sqrt{270(270-120)(270-170)(270-250)}] \mathrm{cm}^{2}$
$=[\sqrt{270 \times 150 \times 100 \times 20}] \mathrm{cm}^{2}$
$=9000 \mathrm{~cm}^{2}$
6. An isosceles triangle has perimeter 30 cm and each of the equal sides is $\mathbf{1 2} \mathbf{~ c m}$. Find the area of the triangle.

Solution:

First, let the third side be x .

It is given that the length of the equal sides is 12 cm and its perimeter is 30 cm .
So, $30=12+12+x$
\therefore The length of the third side $=6 \mathrm{~cm}$
Thus, the semi perimeter of the isosceles triangle $(\mathrm{s})=30 / 2 \mathrm{~cm}=15 \mathrm{~cm}$
Using Heron's formula,
Area of the triangle
$=$
$\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{ }[15(15-12)(15-12)(15-6)] \mathrm{cm}^{2}$
$=\sqrt{ }[15 \times 3 \times 3 \times 9] \mathrm{cm}^{2}$
$=9 \sqrt{ } 15 \mathrm{~cm}^{2}$

