EXERCISE: 12.2 (PAGE NO: 206) 1. A park, in the shape of a quadrilateral ABCD, has $C = 90^{\circ}$, AB = 9 m, BC = 12 m, CD = 5 m and AD = 8 m. How much area does it occupy? ## **Solution:** First, construct a quadrilateral ABCD and join BD. We know that $$C = 90^{\circ}$$, $AB = 9$ m, $BC = 12$ m, $CD = 5$ m and $AD = 8$ m The diagram is: Now, apply Pythagoras theorem in ΔBCD $$BD^2 = BC^2 + CD^2$$ $$\Rightarrow$$ BD² = 12²+5² $$\Rightarrow BD^2 = 169$$ $$\Rightarrow$$ BD = 13 m Now, the area of $\triangle BCD = (\frac{1}{2} \times 12 \times 5) = 30 \text{ m}^2$ The semi perimeter of $\triangle ABD$ $$(s) = (perimeter/2)$$ $$=(8+9+13)/2$$ m $$= 30/2 \text{ m} = 15 \text{ m}$$ Using Heron's formula, Area of $\triangle ABD$ $$\sqrt{s(s-a)(s-b)(s-c)}$$ $$=\sqrt{15(15-13)(15-9)(15-8)}$$ m² $$= \sqrt{15 \times 2 \times 6 \times 7} \text{ m}^2$$ - = $6\sqrt{35}$ m² = 35.5 m² (approximately) - : The area of quadrilateral ABCD = Area of \triangle BCD+Area of \triangle ABD - $=30 \text{ m}^2+35.5\text{m}^2=65.5 \text{ m}^2$ - 2. Find the area of a quadrilateral ABCD in which AB=3 cm, BC=4 cm, CD=4 cm, DA=5 cm and AC=5 cm. First, construct a diagram with the given parameter. Now, apply Pythagorean theorem in \triangle ABC, $$AC^2 = AB^2 + BC^2$$ $$\Rightarrow 5^2 = 3^2 + 4^2$$ $$\Rightarrow 25 = 25$$ Thus, it can be concluded that $\triangle ABC$ is a right angled at B. So, area of $$\triangle BCD = (\frac{1}{2} \times 3 \times 4) = 6 \text{ cm}^2$$ The semi perimeter of \triangle ACD (s) = (perimeter/2) = (5+5+4)/2 cm = 14/2 cm = 7 m Now, using Heron's formula, Area of ΔACD $$\sqrt{s(s-a)(s-b)(s-c)}$$ $$= \left[\sqrt{7(7-5)(7-5)(7-4)}\right] \text{cm}^2$$ $$= \left(\sqrt{7 \times 2 \times 2 \times 3}\right) \text{cm}^2$$ = $2\sqrt{21}$ cm² = 9.17 cm² (approximately) Area of quadrilateral ABCD = Area of \triangle ABC + Area of \triangle ACD = 6 cm² +9.17 cm² = 15.17 cm² 3. Radha made a picture of an aeroplane with coloured paper as shown in Fig 12.15. Find the total area of the paper used. **Solution:** For the triangle I section: It is an isosceles triangle and the sides are 5 cm, 1 cm and 5 cm Perimeter = 5+5+1 = 11 cm So, semi perimeter = 11/2 cm = 5.5 cm Using Heron's formula, Area = $\sqrt{[s(s-a)(s-b)(s-c)]}$ = $\sqrt{[5.5(5.5-5)(5.5-5)(5.5-1)]}$ cm² $=\sqrt{[5.5\times0.5\times0.5\times4.5]}$ cm² $= 0.75\sqrt{11} \text{ cm}^2$ $= 0.75 \times 3.317$ cm² = 2.488cm² (approx) ## For the quadrilateral II section: This quadrilateral is a rectangle with length and breadth as 6.5 cm and 1 cm respectively. : Area = $$6.5 \times 1 \text{ cm}^2 = 6.5 \text{ cm}^2$$ ## For the quadrilateral III section: It is a trapezoid with 2 sides as 1 cm each and the third side as 2 cm. Area of the trapezoid = Area of the parallelogram + Area of the equilateral triangle The perpendicular height of the parallelogram will be $$\left(\sqrt{1^2 - (0.5)^2}\right)$$ = 0.86 cm And, the area of the equilateral triangle will be $(\sqrt{3}/4 \times a^2) = 0.43$ \therefore Area of the trapezoid = 0.86+0.43 = 1.3 cm² (approximately). ## For triangle IV and V: These triangles are 2 congruent right angled triangles having the base as 6 cm and height 1.5 cm Area triangles IV and $V = 2 \times (\frac{1}{2} \times 6 \times 1.5)$ cm² = 9 cm² So, the total area of the paper used = (2.488+6.5+1.3+9) cm² = 19.3 cm² 4. A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are 26 cm, 28 cm and 30 cm, and the parallelogram stands on the base 28 cm, find the height of the parallelogram. #### **Solution:** Given, It is given that the parallelogram and triangle have equal areas. The sides of the triangle are given as 26 cm, 28 cm and 30 cm. So, the perimeter = 26+28+30 = 84 cm And its semi perimeter = 84/2 cm = 42 cm Now, by using Heron's formula, area of the triangle = $$\sqrt{s(s-a)(s-b)(s-c)}$$ - $=\sqrt{42(42-26)(42-28)(42-30)}$ cm² - $=\sqrt{42\times16\times14\times12}$ cm² - $= 336 \text{ cm}^2$ Now, let the height of parallelogram be h. As the area of parallelogram = area of the triangle, $28 \text{ cm} \times \text{ h} = 336 \text{ cm}^2$ ∴ h = 336/28 cm So, the height of the parallelogram is 12 cm. 5. A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m, how much area of grass field will each cow be getting? Draw a rhombus-shaped field first with the vertices as ABCD. The diagonal AC divides the rhombus into two congruent triangles which are having equal areas. The diagram is as follows. Consider the triangle BCD, Its semi-perimeter = (48 + 30 + 30)/2 m = 54 m Using Heron's formula, Area of the $\triangle BCD =$ $$= \sqrt{s(s-a)(s-b)(s-c)}$$ $$= \left(\sqrt{54(54-48)(54-30)(54-30)}\right) m^2$$ $$= \left(\sqrt{54 \times 6 \times 24 \times 24}\right) m^2$$ $= 432 \text{ m}^2$ ∴ Area of field = $2 \times$ area of the $\triangle BCD = (2 \times 432) \text{ m}^2 = 864 \text{ m}^2$ Thus, the area of the grass field that each cow will be getting = (864/18) m² = 48 m² 6. An umbrella is made by stitching 10 triangular pieces of cloth of two different colours (see Fig.12.16), each piece measuring 20 cm, 50 cm and 50 cm. How much cloth of each colour is required for the umbrella? Fig. 12.16 For each triangular piece, The semi perimeter will be s = (50+50+20)/2 cm = 120/2 cm = 60cm Using Heron's formula, Area of the triangular piece = $$\sqrt{s(s-a)(s-b)(s-c)}$$ - = $\sqrt{[60(60-50)(60-50)(60-20)]}$ cm² - $=\sqrt{[60\times10\times10\times40]}$ cm² - $= 200\sqrt{6} \text{ cm}^2$ - ∴ The area of all the triangular pieces = $5 \times 200\sqrt{6}$ cm² = $1000\sqrt{6}$ cm² - 7. A kite in the shape of a square with a diagonal 32 cm and an isosceles triangle of base 8 cm and sides 6 cm each is to be made of three different shades as shown in Fig. 12.17. How much paper of each shade has been used in it? Fig. 12.17 As the kite is in the shape of a square, its area will be $A = (\frac{1}{2}) \times (diagonal)^2$ Area of the kite = $(\frac{1}{2}) \times 32 \times 32 = 512$ cm² The area of shade I = Area of shade II $512/2 \text{ cm}^2 = 256 \text{ cm}^2$ So, the total area of the paper that is required in each shade = 256 cm^2 For the triangle section (III), The sides are given as 6 cm, 6 cm and 8 cm Now, the semi perimeter of this isosceles triangle = (6+6+8)/2 cm = 10 cm By using Heron's formula, the area of the III triangular piece will be $$\sqrt{s(s-a)(s-b)(s-c)}$$ = $\sqrt{[10(10-6)(10-6)(10-8)]}$ cm² $=\sqrt{(10\times4\times4\times2)}$ cm² $= 8\sqrt{5} \text{ cm}^2 = 17.92 \text{ cm}^2 \text{ (approx.)}$ 8. A floral design on a floor is made up of 16 tiles which are triangular, the sides of the triangle being 9 cm, 28 cm and 35 cm (see Fig. 12.18). Find the cost of polishing the tiles at the rate of 50p per cm². The semi perimeter of the each triangular shape = (28+9+35)/2 cm = 36 cm By using Heron's formula, The area of each triangular shape will be $$= \sqrt{s(s-a)(s-b)(s-c)}$$ $$= \left(\sqrt{36 \times (36-35) \times (36-28) \times (36-9)}\right)$$ $$= \left(\sqrt{36 \times 1 \times 8 \times 27}\right) cm^{2}$$ $= 36\sqrt{6} \text{ cm}^2 = 88.2 \text{ cm}^2$ Now, the total area of 16 tiles = $16 \times 88.2 \text{ cm}^2 = 1411.2 \text{ cm}^2$ It is given that the polishing cost of tiles = 50 paise/cm² - : The total polishing cost of the tiles = Rs. (1411.2×0.5) = Rs. 705.6 - 9. A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m. The non-parallel sides are 14 m and 13 m. Find the area of the field. #### **Solution:** First, draw a line segment BE parallel to the line AD. Then, from B, draw a perpendicular on the line segment CD. Now, it can be seen that the quadrilateral ABED is a parallelogram. So, $$AB = ED = 10 \text{ m}$$ $$AD = BE = 13 \text{ m}$$ $$EC = 25-ED = 25-10 = 15 \text{ m}$$ Now, consider the triangle BEC, Its semi perimeter (s) = (13+14+15)/2 = 21 m By using Heron's formula, Area of $\triangle BEC =$ $$\begin{split} &=\sqrt{s(s-a)(s-b)(s-c)} \\ &= \left(\sqrt{21\times(21-13)\times(21-14)\times(21-15)}\right)m^2 \\ &= \left(\sqrt{21\times8\times7\times6}\right)m^2 \end{split}$$ $= 84 \text{ m}^2$ We also know that the area of $\triangle BEC = (\frac{1}{2}) \times CE \times BF$ $84 \text{ cm}^2 = (\frac{1}{2}) \times 15 \times BF$ $$BF = (168/15) \text{ cm} = 11.2 \text{ cm}$$ So, the total area of ABED will be BF \times DE i.e. $11.2\times10 = 112 \text{ m}^2$ \therefore Area of the field = 84+112 = 196 m²