EXERCISE 13.5

1. A matchbox measures $4 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$. What will be the volume of a packet containing 12 such boxes?

Solution:

Dimensions of a matchbox (a cuboid) are $1 \times b \times h=4 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$, respectively
Formula to find the volume of matchbox $=1 \times b \times h=(4 \times 2.5 \times 1.5)=15$
Volume of matchbox $=15 \mathrm{~cm}^{3}$
Now, volume of 12 such matchboxes $=(15 \times 12) \mathrm{cm}^{3}=180 \mathrm{~cm}^{3}$
Therefore, the volume of 12 matchboxes is $180 \mathrm{~cm}^{3}$.
2. A cuboidal water tank is $\mathbf{6 m}$ long, 5 m wide and 4.5 m deep. How many litres of water can it hold? $\left(\mathbf{1} \mathbf{m}^{3}=\mathbf{1 0 0 0}\right.$ 1)

Solution:

Dimensions of a cuboidal water tank are $\mathrm{l}=6 \mathrm{~m}$ and $\mathrm{b}=5 \mathrm{~m}$, and $\mathrm{h}=4.5 \mathrm{~m}$
Formula to find the volume of the tank, $\mathrm{V}=\mathrm{l} \times \mathrm{b} \times \mathrm{h}$
Putting the values, we get
$\mathrm{V}=(6 \times 5 \times 4.5)=135$
The volume of the water tank is $135 \mathrm{~m}^{3}$
Again,
We are given that the amount of water that $1 \mathrm{~m}^{3}$ volume can hold $=10001$
Amount of water, $135 \mathrm{~m}^{3}$ volume hold $=(135 \times 1000)$ litres $=135000$ litres
Therefore, given cuboidal water tank can hold up to 135000 litres of water.
3. A cuboidal vessel is 10 m long and 8 m wide. How high must it be made to hold 380 cubic metres of a liquid?

Solution:

Given:
Length of the cuboidal vessel, $\mathrm{l}=10 \mathrm{~m}$
Width of the cuboidal vessel, $b=8 \mathrm{~m}$
Volume of the cuboidal vessel, $\mathrm{V}=380 \mathrm{~m}^{3}$
Let the height of the given vessel be h.

Formula for volume of a cuboid, $V=1 \times b \times h$
Using the formula, we have
$1 \times b \times h=380$
$10 \times 8 \times \mathrm{h}=380$
Or h $=4.75$
Therefore, the height of the vessels is 4.75 m .
4. Find the cost of digging a cuboidal pit 8 m long, 6 m broad and 3 m deep at the rate of Rs 30 per m^{3}.

Solution:

The given pit has its length(l) as 8 m , width (b)as 6 m and depth (h)as 3 m .
Volume of cuboidal pit $=1 \times \mathrm{b} \times \mathrm{h}=(8 \times 6 \times 3)=144$ (using formula)
The required Volume is $144 \mathrm{~m}^{3}$
Now,
Cost of digging per m^{3} volume $=$ Rs 30
Cost of digging $144 \mathrm{~m}^{3}$ volume $=\operatorname{Rs}(144 \times 30)=$ Rs 4320
5. The capacity of a cuboidal tank is 50000 litres of water. Find the breadth of the tank, if its length and depth are respectively 2.5 m and 10 m .

Solution:

The length (l) and depth (h) of the tank are 2.5 m and 10 m , respectively.
To find: The value of breadth, say b.
Formula to find the volume of $\mathrm{a} \operatorname{tank}=1 \times b \times h=(2.5 \times b \times 10) \mathrm{m}^{3}=25 \mathrm{~b} \mathrm{~m}^{3}$
The capacity of $\operatorname{tank}=25 \mathrm{~b} \mathrm{~m}^{3}$, which is equal to 25000 b litres
Also, the capacity of a cuboidal tank is 50000 litres of water (Given).
Therefore, $25000 \mathrm{~b}=50000$
This implies that $b=2$
Therefore, the breadth of the tank is 2 m .
6. A village, having a population of 4000 , requires 150 litres of water per head per day.

It has a tank measuring $20 \mathrm{~m} \times 15 \mathrm{~m} \times 6 \mathrm{~m}$. For how many days will the water in this tank last?

Solution:

Length of the tank $=1=20 \mathrm{~m}$
Breadth of the tank $=\mathrm{b}=15 \mathrm{~m}$
Height of the tank $=\mathrm{h}=6 \mathrm{~m}$
Total population of a village $=4000$
Consumption of water per head per day $=150$ litres
Water consumed by the people in 1 day $=(4000 \times 150)$ litres $=600000$ litres $\ldots(1)$
Formula to find the capacity of the tank, $\mathrm{C}=1 \times b \times h$
Using the given data, we have
$C=(20 \times 15 \times 6) \mathrm{m}^{3}=1800 \mathrm{~m}^{3}$
Or C $=1800000$ litres
Let water in this tank last for d days.
Water consumed by all people in days = Capacity of the tank (using equation (1))
$600000 \mathrm{~d}=1800000$
$\mathrm{d}=3$
Therefore, the water in this tank will last for 3 days.
7. A godown measures $40 \mathrm{~m} \times 25 \mathrm{~m} \times 15 \mathrm{~m}$. Find the maximum number of wooden crates, each measuring $1.5 \mathrm{~m} \times 1.25 \mathrm{~m} \times 0.5 \mathrm{~m}$, that can be stored in the godown.

Solution:

From the statement, we have
Length of the godown $=40 \mathrm{~m}$
Breadth $=25 \mathrm{~m}$
Height $=15 \mathrm{~m}$
Whereas,
Length of the wooden crate $=1.5 \mathrm{~m}$
Breadth $=1.25 \mathrm{~m}$
Height $=0.5 \mathrm{~m}$

The godown and wooden crate are in cuboidal shape. Find the volume of each using the formula $V=1 b h$
Now,
Volume of godown $=(40 \times 25 \times 15) \mathrm{m}^{3}=15000 \mathrm{~m}^{3}$
Volume of a wooden crate $=(1.5 \times 1.25 \times 0.5) \mathrm{m}^{3}=0.9375 \mathrm{~m}^{3}$
Let us consider that, n wooden crates can be stored in the godown, then
Volume of n wooden crates $=$ Volume of godown
$0.9375 \times n=15000$
Or $\mathrm{n}=15000 / 0.9375=16000$
Hence, the number of wooden crates that can be stored in the godown is 16,000 .
8. A solid cube of side 12 cm is cut into eight cubes of equal volume. What will be the side of the new cube? Also, find the ratio between their surface areas.

Solution:

Side of a cube $=12 \mathrm{~cm}$ (Given)
Find the volume of the cube.
Volume of cube $=(\text { Side })^{3}=(12)^{3} \mathrm{~cm}^{3}=1728 \mathrm{~cm}^{3}$
Surface area of a cube with side $12 \mathrm{~cm}=6 \mathrm{a}^{2}=6(12)^{2} \mathrm{~cm}^{2} \ldots$ (1)
The cube is cut into eight small cubes of equal volume; say, the side of each cube is p .
Volume of a small cube $=\mathrm{p}^{3}$
Surface area $=6 p^{2}$.
Volume of each small cube $=(1728 / 8) \mathrm{cm}^{3}=216 \mathrm{~cm}^{3}$
Or $(\mathrm{p})^{3}=216 \mathrm{~cm}^{3}$
Or $\mathrm{p}=6 \mathrm{~cm}$
Now, Surface areas of the cubes ratios $=($ Surface area of the bigger cube $) /($ Surface area of the smaller cubes $)$
From equations (1) and (2), we get
Surface areas of the cubes ratios $=\left(6 a^{2}\right) /\left(6 p^{2}\right)=a^{2} / p^{2}=12^{2} / 6^{2}=4$
Therefore, the required ratio is $4: 1$.
9. A river 3 m deep and 40 m wide is flowing at the rate of 2 km per hour. How much water will fall into the sea in a minute?

Solution:

Given:
Depth of river, $\mathrm{h}=3 \mathrm{~m}$
Width of river, $\mathrm{b}=40 \mathrm{~m}$
Rate of water flow $=2 \mathrm{~km}$ per hour $=2000 \mathrm{~m} / 60 \mathrm{~min}=100 / 3 \mathrm{~m} / \mathrm{min}$
Now, volume of water flowed in $1 \mathrm{~min}=(100 / 3) \times 40 \times 3=4000 \mathrm{~m}^{3}$
Therefore, $4000 \mathrm{~m}^{3}$ water will fall into the sea in a minute.

