EXERCISE 13.6

1. The circumference of the base of the cylindrical vessel is 132 cm , and its height is 25 cm .

How many litres of water can it hold? $\left(1000 \mathrm{~cm}^{\mathbf{3}}=\mathbf{1 L}\right)($ Assume $\boldsymbol{\pi}=\mathbf{2 2} / 7$)
Solution:
Circumference of the base of cylindrical vessel $=132 \mathrm{~cm}$
Height of vessel, $\mathrm{h}=25 \mathrm{~cm}$
Let r be the radius of the cylindrical vessel.
Step 1: Find the radius of the vessel.
We know that the circumference of the base $=2 \pi$ r, so
$2 \pi r=132$ (given)
$r=(132 /(2 \pi))$
$r=66 \times 7 / 22=21$
The radius is 21 cm .
Step 2: Find the volume of the vessel.
Formula: Volume of cylindrical vessel $=\pi r^{2} h$
$=(22 / 7) \times 21^{2} \times 25$
$=34650$

Therefore, the volume is $34650 \mathrm{~cm}^{3}$
Since $1000 \mathrm{~cm}^{3}=1 \mathrm{~L}$
So, Volume $=34650 / 1000 \mathrm{~L}=34.65 \mathrm{~L}$
Therefore, the vessel can hold 34.65 litres of water.
2. The inner diameter of a cylindrical wooden pipe is 24 cm , and its outer diameter is 28 cm . The length of the pipe is 35 cm . Find the mass of the pipe, if $1 \mathrm{~cm}^{3}$ of wood has a mass of 0.6 g . (Assume $\pi=22 / 7$)

Solution:

Inner radius of cylindrical pipe, say $\mathrm{r}_{1}=$ diameter $_{1} / 2=24 / 2 \mathrm{~cm}=12 \mathrm{~cm}$
Outer radius of cylindrical pipe, say $\mathrm{r}_{2}=$ diameter $_{2} / 2=28 / 2 \mathrm{~cm}=14 \mathrm{~cm}$
Height of pipe, $\mathrm{h}=$ Length of pipe $=35 \mathrm{~cm}$

Now, the Volume of pipe $=\pi\left(r_{2}{ }^{2}-r_{1}{ }^{2}\right) \mathrm{hcm}^{3}$
Substitute the values.
Volume of pipe $=110 \times 52 \mathrm{~cm}^{3}=5720 \mathrm{~cm}^{3}$
Since Mass of $1 \mathrm{~cm}^{3}$ wood $=0.6 \mathrm{~g}$
Mass of $5720 \mathrm{~cm}^{3}$ wood $=(5720 \times 0.6) \mathrm{g}=3432 \mathrm{~g}$ or 3.432 kg .
3. A soft drink is available in two packs - (i) a tin can with a rectangular base of length 5 cm and width 4 cm , having a height of 15 cm and (ii) a plastic cylinder with a circular base of diameter 7 cm and height 10 cm . Which container has greater capacity, and by how much? (Assume $\boldsymbol{\pi}=22 / 7$)

Solution:

(i) Tin can will be cuboidal in shape.

Dimensions of the tin can are
Length, $1=5 \mathrm{~cm}$
Breadth, $\mathrm{b}=4 \mathrm{~cm}$
Height, $\mathrm{h}=15 \mathrm{~cm}$
Capacity of tin can $=l \times b \times h=(5 \times 4 \times 15) \mathrm{cm}^{3}=300 \mathrm{~cm}^{3}$
(ii) Plastic cylinder will be cylindrical in shape.

Dimensions of the plastic can are
Radius of the circular end of plastic cylinder, $r=3.5 \mathrm{~cm}$
Height, $\mathrm{H}=10 \mathrm{~cm}$
Capacity of the plastic cylinder $=\pi r^{2} \mathrm{H}$
Capacity of the plastic cylinder $=(22 / 7) \times(3.5)^{2} \times 10=385$
Capacity of the plastic cylinder is $385 \mathrm{~cm}^{3}$
From the results of (i) and (ii), the plastic cylinder has more capacity.
Difference in capacity $=(385-300) \mathrm{cm}^{3}=85 \mathrm{~cm}^{3}$
4. If the lateral surface of a cylinder is $94.2 \mathrm{~cm}^{2}$ and its height is 5 cm , then find
(i) radius of its base (ii) its volume.[Use $\pi=3.14$]

Solution:

CSA of cylinder $=94.2 \mathrm{~cm}^{2}$
Height of cylinder, $\mathrm{h}=5 \mathrm{~cm}$
(i) Let the radius of the cylinder be r.

Using the CSA of the cylinder, we get
$2 \pi \mathrm{rh}=94.2$
$2 \times 3.14 \times \mathrm{r} \times 5=94.2$
$r=3$

The radius is 3 cm .
(ii) Volume of cylinder

The formula for the volume of the cylinder $=\pi r^{2} h$
Now, $\pi r^{2} \mathrm{~h}=\left(3.14 \times(3)^{2} \times 5\right)($ using the value of r from (i) $)$
$=141.3$
Volume is $141.3 \mathrm{~cm}^{3}$
5. It costs Rs 2200 to paint the inner curved surface of a cylindrical vessel 10 m deep. If the cost of painting is at the rate of Rs $\mathbf{2 0}$ per \mathbf{m}^{2}, find
(i) inner curved surface area of the vessel
(ii) radius of the base
(iii) capacity of the vessel
(Assume $\pi=22 / 7$)
Solution:
(i) Rs 20 is the cost of painting $1 \mathrm{~m}^{2}$ area.

Rs 1 is the cost to paint $1 / 20 \mathrm{~m}^{2}$ area.
So, Rs 2200 is the cost of painting $=(1 / 20 \times 2200) \mathrm{m}^{2}$
$=110 \mathrm{~m}^{2}$ area
The inner surface area of the vessel is $110 \mathrm{~m}^{2}$.
(ii) Radius of the base of the vessel, let us say r .

Height $(\mathrm{h})=10 \mathrm{~m}$ and
Surface area formula $=2 \pi \mathrm{rh}$
Using the result of (i),
$2 \pi \mathrm{rh}=110 \mathrm{~m}^{2}$
$2 \times 22 / 7 \times r \times 10=110$
$\mathrm{r}=1.75$
The radius is 1.75 m .
(iii) Volume of vessel formula $=\pi \mathrm{r}^{2} \mathrm{~h}$

Here $\mathrm{r}=1.75$ and $\mathrm{h}=10$
Volume $=(22 / 7) \times(1.75)^{2} \times 10=96.25$
The volume of vessel is $96.25 \mathrm{~m}^{3}$
Therefore, the capacity of the vessel is $96.25 \mathrm{~m}^{3}$ or 96250 litres.
6. The capacity of a closed cylindrical vessel of height 1 m is 15.4 litres. How many square metres of the metal sheet would be needed to make it? (Assume $\pi=22 / 7$)

Solution:

Height of cylindrical vessel, $\mathrm{h}=1 \mathrm{~m}$
Capacity of cylindrical vessel $=15.4$ litres $=0.0154 \mathrm{~m}^{3}$
Let r be the radius of the circular end.
Now,
Capacity of cylindrical vessel $=(22 / 7) \times \mathrm{r}^{2} \times 1=0.0154$
After simplifying, we get $r=0.07 \mathrm{~m}$
Again, the total surface area of the vessel $=2 \pi r(r+h)$
$=2 \times 22 / 7 \times 0.07(0.07+1)$
$=0.44 \times 1.07$
$=0.4708$
Total surface area of the vessel is $0.4708 \mathrm{~m}^{2}$
Therefore, $0.4708 \mathrm{~m}^{2}$ of the metal sheet would be required to make the cylindrical vessel.
7. A lead pencil consists of a cylinder of wood with a solid cylinder of graphite filled in the interior. The diameter of the pencil is 7 mm , and the diameter of the graphite is 1 mm . If the length of the pencil is 14 cm , find the volume of the wood and that of the graphite. (Assume $\pi=22 / 7$)

Solution:

Radius of pencil, $\mathrm{r}_{1}=7 / 2 \mathrm{~mm}=0.7 / 2 \mathrm{~cm}=0.35 \mathrm{~cm}$
Radius of graphite, $\mathrm{r}_{2}=1 / 2 \mathrm{~mm}=0.1 / 2 \mathrm{~cm}=0.05 \mathrm{~cm}$

Height of pencil, $\mathrm{h}=14 \mathrm{~cm}$
Formula to find the volume of wood in pencil $=\left(\mathrm{r}_{1}{ }^{2}-\mathrm{r}_{2}{ }^{2}\right) \mathrm{h}$ cubic units
Substituting values, we have,
$=\left[(22 / 7) \times\left(0.35^{2}-0.05^{2}\right) \times 14\right]$
$=44 \times 0.12$
$=5.28$

This implies that the volume of wood in pencil $=5.28 \mathrm{~cm}^{3}$
Again,
Volume of graphite $=r_{2}{ }^{2}$ h cubic units
Substituting the values, we have,
$=(22 / 7) \times 0.05^{2} \times 14$
$=44 \times 0.0025$
$=0.11$

So, the volume of graphite is $0.11 \mathrm{~cm}^{3}$.
8. A patient in a hospital is given soup daily in a cylindrical bowl of diameter 7 cm . If the bowl is filled with soup to a height of 4 cm , how much soup the hospital has to prepare daily to serve 250 patients? (Assume $\pi=22 / 7$)

Solution:

Diameter of the cylindrical bowl $=7 \mathrm{~cm}$
Radius of the cylindrical bowl, $\mathrm{r}=7 / 2 \mathrm{~cm}=3.5 \mathrm{~cm}$
Bowl is filled with soup to a height of 4 cm , so $\mathrm{h}=4 \mathrm{~cm}$

Volume of the soup in one bowl $=\pi r^{2} h$
$(22 / 7) \times 3.5^{2} \times 4=154$
Volume of the soup in one bowl is $154 \mathrm{~cm}^{3}$
Therefore,
Volume of the soup given to 250 patients $=(250 \times 154) \mathrm{cm}^{3}=38500 \mathrm{~cm}^{3}$
$=38.5 \mathrm{litres}$.

