EXERCISE 13.7

1. Find the volume of the right circular cone with
(i) radius 6 cm , height 7 cm (ii) radius 3.5 cm , height 12 cm (Assume $\pi=22 / 7$)

Solution:

Volume of cone $=(1 / 3) \pi r^{2} \mathrm{~h}$ cube units
Where r be radius and h be the height of the cone
(i) Radius of the cone, $r=6 \mathrm{~cm}$

Height of the cone, $\mathrm{h}=7 \mathrm{~cm}$
Ley V be the volume of the cone, so we have
$\mathrm{V}=(1 / 3) \times(22 / 7) \times 36 \times 7$
$=(12 \times 22)$
$=264$
The volume of the cone is $264 \mathrm{~cm}^{3}$.
(ii) Radius of the cone, $\mathrm{r}=3.5 \mathrm{~cm}$

Height of the cone, $\mathrm{h}=12 \mathrm{~cm}$
Volume of the cone $=(1 / 3) \times(22 / 7) \times 3.5^{2} \times 7=154$

Hence,
The volume of the cone is $154 \mathrm{~cm}^{3}$.
2. Find the capacity in litres of a conical vessel with
(i) radius 7 cm , slant height 25 cm (ii) height 12 cm , slant height 13 cm
(Assume $\pi=22 / 7$)

Solution:

(i) Radius of the cone, $\mathrm{r}=7 \mathrm{~cm}$

Slant height of the cone, $1=25 \mathrm{~cm}$

Height of cone, $\mathrm{h}=\sqrt{l^{2}-r^{2}}$
$\mathrm{h}=\sqrt{25^{2}-7^{2}}$
$h=\sqrt{625-49}$
or $\mathrm{h}=24$
Height of the cone is 24 cm
Now,
Volume of the cone, $\mathrm{V}=(1 / 3) \pi \mathrm{r}^{2} \mathrm{~h}$ (formula)
$\mathrm{V}=(1 / 3) \times(22 / 7) \times 7^{2} \times 24$
$=(154 \times 8)$
$=1232$
So, the volume of the vessel is $1232 \mathrm{~cm}^{3}$
Therefore, the capacity of the conical vessel $=(1232 / 1000)$ liters (because $\left.1 \mathrm{~L}=1000 \mathrm{~cm}^{3}\right)$
$=1.232$ Liters.
(ii) Height of the cone, $\mathrm{h}=12 \mathrm{~cm}$

Slant height of the cone, $1=13 \mathrm{~cm}$
Radius of cone, $\mathrm{r}=\sqrt{l^{2}-h^{2}}$
$\mathrm{r}=\sqrt{13^{2}-12^{2}}$
$\mathrm{r}=\sqrt{169-144}$
$r=5$
Hence, the radius of the cone is 5 cm .
Now, Volume of the cone, $\mathrm{V}=(1 / 3) \pi \mathrm{r}^{2} \mathrm{~h}$
$\mathrm{V}=(1 / 3) \times(22 / 7) \times 52 \times 12 \mathrm{~cm}^{3}$
$=2200 / 7$
Volume of the cone is $2200 / 7 \mathrm{~cm}^{3}$
Now, Capacity of the conical vessel $=2200 / 7000$ litres $\left(1 \mathrm{~L}=1000 \mathrm{~cm}^{3}\right)$
$=11 / 35$ litres
3. The height of a cone is 15 cm . If its volume is $1570 \mathrm{~cm}^{3}$, find the diameter of its base. (Use $\pi=3.14$)

Solution:

Height of the cone, $\mathrm{h}=15 \mathrm{~cm}$
Volume of cone $=1570 \mathrm{~cm}^{3}$
Let r be the radius of the cone
As we know, volume of the cone, $\mathrm{V}=(1 / 3) \pi r^{2} \mathrm{~h}$
So, ($1 / 3$) $\pi r^{2} \mathrm{~h}=1570$
$(1 / 3) \times 3.14 \times \mathrm{r}^{2} \times 15=1570$
$r^{2}=100$
$\mathrm{r}=10$
Radius of the base of the cone 10 cm .
4. If the volume of a right circular cone of height 9 cm is $48 \pi \mathrm{~cm}^{3}$, find the diameter of its base.

Solution:
Height of cone, $\mathrm{h}=9 \mathrm{~cm}$
Volume of cone $=48 \pi \mathrm{~cm}^{3}$
Let r be the radius of the cone.
As we know, volume of the cone, $\mathrm{V}=(1 / 3) \pi r^{2} h$
So, $1 / 3 \pi \mathrm{r}^{2}(9)=48 \pi$
$r^{2}=16$
$\mathrm{r}=4$
Radius of the cone is 4 cm .
So, diameter $=2 \times$ Radius $=8$
Thus, diameter of the base is 8 cm .
5. A conical pit of a top diameter 3.5 m is 12 m deep. What is its capacity in kilolitres?
(Assume $\pi=22 / 7$)

Solution:

Diameter of conical pit $=3.5 \mathrm{~m}$

Radius of conical pit, $\mathrm{r}=$ diameter/2 $=(3.5 / 2) \mathrm{m}=1.75 \mathrm{~m}$
Height of pit, $\mathrm{h}=$ Depth of pit $=12 \mathrm{~m}$
Volume of cone, $\mathrm{V}=(1 / 3) \pi r^{2} \mathrm{~h}$
$\mathrm{V}=(1 / 3) \times(22 / 7) \times(1.75)^{2} \times 12=38.5$
Volume of the cone is $38.5 \mathrm{~m}^{3}$
Hence, capacity of the pit $=(38.5 \times 1)$ kiloliters $=38.5$ kiloliters.
6. The volume of a right circular cone is $9856 \mathrm{~cm}^{3}$. If the diameter of the base is 28 cm , find
(i) height of the cone
(ii) slant height of the cone
(iii) curved surface area of the cone
(Assume $\pi=22 / 7$)

Solution:

Volume of a right circular cone $=9856 \mathrm{~cm}^{3}$
Diameter of the base $=28 \mathrm{~cm}$
(i) Radius of cone, $\mathrm{r}=(28 / 2) \mathrm{cm}=14 \mathrm{~cm}$

Let the height of the cone be h
Volume of cone, $\mathrm{V}=(1 / 3) \pi r^{2} \mathrm{~h}$
$(1 / 3) \pi r^{2} \mathrm{~h}=9856$
$(1 / 3) \times(22 / 7) \times 14 \times 14 \times \mathrm{h}=9856$
$\mathrm{h}=48$
The height of the cone is 48 cm .
(ii) Slant height of cone, $1=\sqrt{r^{2}+h^{2}}$

$$
1=\sqrt{14^{2}+48^{2}}=\sqrt{196+2304}=50
$$

Slant height of the cone is 50 cm .
(iii) curved surface area of cone $=\pi \mathrm{rl}$
$=(22 / 7) \times 14 \times 50$
$=2200$
Curved surface area of the cone is $2200 \mathrm{~cm}^{2}$.
7. A right triangle ABC with sides $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm is revolved about the side 12 cm . Find the volume of the solid so obtained.

Solution:

Height $(\mathrm{h})=12 \mathrm{~cm}$
Radius (r) $=5 \mathrm{~cm}$, and
Slant height $(\mathrm{l})=13 \mathrm{~cm}$

Volume of cone, $\mathrm{V}=(1 / 3) \pi r^{2} \mathrm{~h}$
$\mathrm{V}=(1 / 3) \times \pi \times 5^{2} \times 12$
$=100 \pi$
Volume of the cone so formed is $100 \pi \mathrm{~cm}^{3}$.
8. If the triangle ABC in Question 7 is revolved about the side 5 cm , then find the volume of the solids so obtained. Find also the ratio of the volumes of the two solids obtained in Questions 7 and 8.

Solution:

A right-angled $\triangle \mathrm{ABC}$ is revolved about its side 5 cm , a cone will be formed of radius as 12 cm , height as 5 cm , and slant height as 13 cm .

Volume of cone $=(1 / 3) \pi r^{2} h$, where r is the radius and h is the height of the cone.
$=(1 / 3) \times \pi \times 12 \times 12 \times 5$
$=240 \pi$
The volume of the cones formed is $240 \pi \mathrm{~cm}^{3}$.
So, the required ratio $=($ the result of question 7$) /($ the result of question 8$)=(100 \pi) /(240 \pi)=5 / 12=5: 12$.
9. A heap of wheat is in the form of a cone whose diameter is 10.5 m and height is $\mathbf{3} \mathbf{~ m}$. Find its volume. The heap is to be covered by canvas to protect it from rain. Find the area of the canvas.
(Assume $\pi=22 / 7$)

Solution:

Radius (r) of heap $=(10.5 / 2) \mathrm{m}=5.25$
Height (h) of heap $=3 \mathrm{~m}$
Volume of heap $=(1 / 3) \pi r^{2} h$
$=(1 / 3) \times(22 / 7) \times 5.25 \times 5.25 \times 3$
$=86.625$
The volume of the heap of wheat is $86.625 \mathrm{~m}^{3}$.
Again,
Area of canvas required $=\mathrm{CSA}$ of cone $=\pi \mathrm{rl}$, where $1=\sqrt{r^{2}+h^{2}}$
After substituting the values, we have
CSA of cone $=\left[\frac{22}{7} \times 5.25 \times \sqrt{(5.25)^{2}+3^{2}}\right]$
$=(22 / 7) \times 5.25 \times 6.05$

$$
=99.825
$$

Therefore, the area of the canvas is $99.825 \mathrm{~m}^{2}$.

