EXERCISE 13.9

1. A wooden bookshelf has external dimensions as follows: Height $=110 \mathrm{~cm}$, Depth $=\mathbf{2 5} \mathrm{cm}$,

Breadth $=85 \mathrm{~cm}$ (see fig. 13.31). The thickness of the plank is 5 cm everywhere. The external faces are to be polished, and the inner faces are to be painted. If the rate of polishing is 20 paise per cm^{2} and the rate of painting is $\mathbf{1 0}$ paise per cm^{2}, find the total expenses required for polishing and painting the surface of the bookshelf.

Fig. 13.31

Solution:

External dimensions of book self:
Length, $1=85 \mathrm{~cm}$
Breadth, $\mathrm{b}=25 \mathrm{~cm}$
Height, $\mathrm{h}=110 \mathrm{~cm}$
External surface area of the shelf while leaving out the front face of the shelf.
$=\mathrm{lh}+2(\mathrm{lb}+\mathrm{bh})$
$=[85 \times 110+2(85 \times 25+25 \times 110)]=(9350+9750)=19100$
External surface area of the shelf is $19100 \mathrm{~cm}^{2}$
Area of front face $=[85 \times 110-75 \times 100+2(75 \times 5)]=1850+750$
So, the area is $2600 \mathrm{~cm}^{2}$
Area to be polished $=(19100+2600) \mathrm{cm}^{2}=21700 \mathrm{~cm}^{2}$.
Cost of polishing $1 \mathrm{~cm}^{2}$ area $=$ Rs 0.20
Cost of polishing $21700 \mathrm{~cm}^{2}$ area Rs. $(21700 \times 0.20)=$ Rs 4340
Dimensions of the row of the bookshelf
Length $(\mathrm{l})=75 \mathrm{~cm}$

Breadth (b) $=20 \mathrm{~cm}$ and
$\operatorname{Height}(\mathrm{h})=30 \mathrm{~cm}$
Area to be painted in one row $=2(1+h) b+l h=[2(75+30) \times 20+75 \times 30]=(4200+2250)=6450$
So, the area is $6450 \mathrm{~cm}^{2}$.
Area to be painted in 3 rows $=(3 \times 6450) \mathrm{cm}^{2}=19350 \mathrm{~cm}^{2}$.
Cost of painting $1 \mathrm{~cm}^{2}$ area $=$ Rs. 0.10
Cost of painting $19350 \mathrm{~cm}^{2}$ area $=$ Rs $(19350 \times 0.1)=$ Rs 1935
Total expense required for polishing and painting $=$ Rs. $(4340+1935)=$ Rs. 6275
Answer: The cost for polishing and painting the surface of the bookshelf is Rs. 6275.
2. The front compound wall of a house is decorated by wooden spheres of diameter 21 cm , placed on small supports as shown in fig. 13.32. Eight such spheres are used forth is the purpose and are to be painted silver. Each support is a cylinder of radius 1.5 cm and height 7 cm and is to be painted black. Find the cost of paint required if silver paint costs 25 paise per cm^{2}, and black paint costs 5 paise per cm^{2}.

Fig. 13.32

Solution:

Diameter of the wooden sphere $=21 \mathrm{~cm}$
Radius of the wooden sphere, $\mathrm{r}=$ diameter/2 $=(21 / 2) \mathrm{cm}=10.5 \mathrm{~cm}$
Formula: Surface area of the wooden sphere $=4 \pi r^{2}$
$=4 \times(22 / 7) \times(10.5)^{2}=1386$
So, the surface area is $1386 \mathrm{~cm}^{3}$
Radius of the circular end of cylindrical support $=1.5 \mathrm{~cm}$
Height of the cylindrical support $=7 \mathrm{~cm}$
Curved surface area $=2 \pi r h$
$=2 \times(22 / 7) \times 1.5 \times 7=66$
So, CSA is $66 \mathrm{~cm}^{2}$

Now,
Area of the circular end of cylindrical support $=\pi r^{2}$
$=(22 / 7) \times 1.5^{2}$
$=7.07$

Area of the circular end is $7.07 \mathrm{~cm}^{2}$
Again,
Area to be painted silver $=[8 \times(1386-7.07)]=8 \times 1378.93=11031.44$
Area to be painted is $11031.44 \mathrm{~cm}^{2}$
Cost for painting with silver colour $=\operatorname{Rs}(11031.44 \times 0.25)=$ Rs 2757.86
Area to be painted black $=(8 \times 66) \mathrm{cm}^{2}=528 \mathrm{~cm}^{2}$
Cost for painting with black colour $=$ Rs $(528 \times 0.05)=$ Rs 26.40
Therefore, the total painting cost is
$=\operatorname{Rs}(2757.86+26.40)$
$=$ Rs 2784.26
3. The diameter of a sphere is decreased by 25%. By what per cent does its curved surface area decrease?

Solution:

Let the diameter of the sphere be "d".
Radius of the sphere, $r_{1}=d / 2$
New radius of the sphere, say $r_{2}=(d / 2) \times(1-25 / 100)=3 \mathrm{~d} / 8$
Curved surface area of the sphere, $(C S A)_{1}=4 \pi r_{1}{ }^{2}=4 \pi \times(\mathrm{d} / 2)^{2}=\pi \mathrm{d}^{2} \ldots(1)$
Curved surface area of the sphere when the radius is decreased $(C S A)_{2}=4 \pi r_{2}{ }^{2}=4 \pi \times(3 \mathrm{~d} / 8)^{2}=(9 / 16) \pi \mathrm{d}^{2} \ldots(2)$
From equations (1) and (2), we have
Decrease in surface area of sphere $=(\mathrm{CSA})_{1}-(\mathrm{CSA})_{2}$
$=\pi \mathrm{d}^{2}-(9 / 16) \pi \mathrm{d}^{2}$
$=(7 / 16) \pi \mathrm{d}^{2}$
Percentage decrease in surface area of sphere $=\frac{(C S A)_{1}-(C S A)_{2}}{(C S A)_{1}} \times 100$
$=\left(7 \mathrm{~d}^{2} / 16 \mathrm{~d}^{2}\right) \times 100=700 / 16=43.75 \%$.
Therefore, the percentage decrease in the surface area of the sphere is 43.75%.

