EXERCISE 15.1

1. In a cricket match, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.

Solution:

According to the question,
Total number of balls $=30$
Number of boundary $=6$
Number of times batswoman didn't hit boundary $=30-6=24$
Probability she did not hit a boundary $=24 / 30=4 / 5$
2. 1500 families with 2 children were selected randomly, and the following data were recorded:

Number of girls in a family	2	1	0
Number of families	475		814

Compute the probability of a family, chosen at random, having
(i) 2 girls
(ii) 1 girl
(iii) No girl

Also check whether the sum of these probabilities is 1 .
Solution:
Total numbers of families $=1500$
(i) Number of families having 2 girls $=475$

Probability $=$ Number of families having 2 girls/Total number of families
$=475 / 1500=19 / 60$
(ii) Number of families having 1 girl $=814$

Probability $=$ Number of families having 1 girl/Total number of families
$=814 / 1500=407 / 750$
(iii) Number of families having 0 girls $=211$

Probability $=$ Number of families having 0 girls/Total number of families
$=211 / 1500$
Sum of the probability $=(19 / 60)+(407 / 750)+(211 / 1500)$
$=(475+814+211) / 1500$
$=1500 / 1500=1$
Yes, the sum of these probabilities is 1 .
3. Refer to Example 5, Section 14.4, Chapter 14. Find the probability that a student of the class was born in August.
Solution:

Total number of students in the class $=40$
Number of students born in August $=6$
The probability that a student of the class was born in August $=6 / 40=3 / 20$
4. Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes:

Outcome	3 heads	2 heads	1 head	No head
Frequency	23	72	77	28

If the three coins are simultaneously tossed again, compute the probability of $\mathbf{2}$ heads coming up.
Solution:
Number of times 2 heads come up $=72$
Total number of times the coins were tossed $=200$
\therefore, the probability of 2 heads coming up $=72 / 200=9 / 25$
5. An organisation selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:

Monthly income (in ₹)	Vehicles per family			
	0	1	2	Above 2
Less than 7000	10	160	25	0
$7000-10000$	0	305	27	2
$10000-13000$	1	535	29	1
$13000-16000$	2	469	59	25
16000 or more	1	579	82	88
S				

Suppose a family is chosen. Find the probability that the family chosen is
(i) earning ₹ 10000 - 13000 per month and owning exactly 2 vehicles.
(ii) earning ₹ 16000 or more per month and owning exactly 1 vehicle.
(iii) earning less than $₹ 7000$ per month and does not own any vehicle.
(iv) earning ₹ 13000 - $\mathbf{1 6 0 0 0}$ per month and owning more than $\mathbf{2}$ vehicles.
(v) owning not more than 1 vehicle.

Solution:
Total number of families $=2400$
(i) Number of families earning ₹ $10000-13000$ per month and owning exactly 2 vehicles $=29$
\therefore, the probability that the family chosen is earning ₹ $10000-13000$ per month and owning exactly 2 vehicles $=29 / 2400$
(ii) Number of families earning ₹ 16000 or more per month and owning exactly 1 vehicle $=579$
\therefore, the probability that the family chosen is earning₹ 16000 or more per month and owning exactly 1 vehicle $=579 / 2400$
(iii) Number of families earning less than $₹ 7000$ per month and does not own any vehicle $=10$
\therefore, the probability that the family chosen is earning less than ₹7000 per month and does not own any vehicle $=10 / 2400$ $=1 / 240$
(iv) Number of families earning ₹13000-16000 per month and owning more than 2 vehicles $=25$
\therefore, the probability that the family chosen is earning ₹ $13000-16000$ per month and owning more than 2 vehicles $=$ $25 / 2400=1 / 96$
(v) Number of families owning not more than 1 vehicle $=10+160+0+305+1+535+2+469+1+579$ $=2062$
\therefore, the probability that the family chosen owns not more than 1 vehicle $=2062 / 2400=1031 / 1200$
6. Refer to Table 14.7, Chapter 14.
(i) Find the probability that a student obtained less than 20% in the mathematics test.
(ii) Find the probability that a student obtained marks 60 or above.

Solution:

Marks	Number of students
$0-20$	7
$20-30$	10
$30-40$	20
$40-50$	20
$50-60$	10
$70-70$	80
Total above	

Total number of students $=90$
(i) Number of students who obtained less than 20% in the mathematics test $=7$
\therefore, the probability that a student obtained less than 20% in the mathematics test $=7 / 90$
(ii) Number of students who obtained marks 60 or above $=15+8=23$
\therefore, the probability that a student obtained marks 60 or above $=23 / 90$
7. To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table.

Opinion	Number of students
like	135
dislike	65

Find the probability that a student chosen at random
(i) likes statistics, (ii) does not like it.

Solution:
Total number of students $=135+65=200$
(i) Number of students who like statistics $=135$
, the probability that a student likes statistics $=135 / 200=27 / 40$
(ii) Number of students who do not like statistics $=65$
\therefore, the probability that a student does not like statistics $=65 / 200=13 / 40$
8. Refer to Q.2, Exercise 14.2. What is the empirical probability that an engineer lives:
(i) less than $7 \mathbf{k m}$ from her place of work?
(ii) more than or equal to $\mathbf{7 k m}$ from her place of work?
(iii) Within $1 / 2 \mathrm{~km}$ from her place of work?

Solution:
The distance (in km) of 40 engineers from their residence to their place of work were found as follows:

5	3	10	20	25	11	13	7	12	31	19	10	12	17	18	11	3	2	
17	16	2	7	9	7	8	3	5	12	15	18	3	12	14	2	9	6	
15	15	7	6	12														

Total numbers of engineers $=40$
(i) Number of engineers living less than 7 km from their place of work $=9$
, the probability that an engineer lives less than 7 km from her place of work $=9 / 40$
(ii) Number of engineers living more than or equal to 7 km from their place of work $=40-9=31$
, probability that an engineer lives more than or equal to 7 km from her place of work $=31 / 40$
(iii) Number of engineers living within $1 / 2 \mathrm{~km}$ from their place of work $=0$
\therefore, the probability that an engineer lives within $1 / 2 \mathrm{~km}$ from her place of work $=0 / 40=0$
9. Activity : Note the frequency of two-wheelers, three-wheelers and four-wheelers going past during a time interval, in front of your school gate. Find the probability that any one vehicle out of the total vehicles you have observed is a two-wheeler.

Solution:

The question is an activity to be performed by the students.
Hence, perform the activity by yourself and note down your inference.
10. Activity : Ask all the students in your class to write a 3-digit number. Choose any student from the room at random. What is the probability that the number written by her/him is divisible by 3 ? Remember that a number is divisible by 3 , if the sum of its digits is divisible by 3 .

Solution:

The question is an activity to be performed by the students.
Hence, perform the activity by yourself and note down your inference.
11. Eleven bags of wheat flour, each marked 5 kg , actually contained the following weights of flour (in kg):

4.97	5.05	5.08	5.03	5.00	5.06	5.08	4.98	5.04	5.07	5.00

Find the probability that any of these bags chosen at random contains more than $\mathbf{5} \mathbf{k g}$ of flour.

Solution:

Total number of bags present $=11$
Number of bags containing more than 5 kg of flour $=7$
\therefore, the probability that any of the bags chosen at random contains more than 5 kg of flour $=7 / 11$
12. In Q.5, Exercise 14.2, you were asked to prepare a frequency distribution table, regarding the concentration of sulphur dioxide in the air in parts per million of a certain city for $\mathbf{3 0}$ days. Using this table, find the probability of the concentration of sulphur dioxide in the interval 0.12-0.16 on any of these days.

The data obtained for $\mathbf{3 0}$ days is as follows:

0.03	0.08	0.08	0.09	0.04	0.17	0.16	0.05	0.02	0.06	0.18	0.20	0.11	0.08	0.12
0.13	0.22	0.07	0.08	0.01	0.10	0.06	0.09	0.18	0.11	0.07	0.05	0.07	0.01	0.04

Solution:

Total number of days in which the data was recorded $=30$ days
Number of days in which sulphur dioxide was present in between the interval 0.12-0.16 $=2$
\therefore, the probability of the concentration of sulphur dioxide in the interval $0.12-0.16$ on any of these days $=2 / 30=1 / 15$
13. In Q.1, Exercise 14.2, you were asked to prepare a frequency distribution table regarding the blood groups of 30 students of a class. Use this table to determine the probability that a student of this class, selected at random, has blood group AB.
The blood groups of 30 students of Class VIII are recorded as follows:
$\mathrm{A}, \mathrm{B}, \mathrm{O}, \mathrm{O}, \mathrm{AB}, \mathrm{O}, \mathrm{A}, \mathrm{O}, \mathrm{B}, \mathrm{A}, \mathrm{O}, \mathrm{B}, \mathrm{A}, \mathrm{O}, \mathrm{O}, \mathrm{A}, \mathrm{AB}, \mathrm{O}, \mathrm{A}, \mathrm{A}, \mathrm{O}, \mathrm{O}, \mathrm{AB}, \mathrm{B}, \mathrm{A}, \mathrm{O}, \mathrm{B}, \mathrm{A}, \mathrm{B}, \mathrm{O}$.
Solution:

Total numbers of students $=30$
Number of students having blood group $\mathrm{AB}=3$
\therefore, the probability that a student of this class, selected at random, has blood group $\mathrm{AB}=3 / 30=1 / 10$

