EXERCISE 4.1

1. The cost of a notebook is twice the cost of a pen. Write a linear equation in two variables to represent this statement.
(Take the cost of a notebook to be ₹ x and that of a pen to be ₹ y)

Solution:

Let the cost of a notebook be $=₹ \mathrm{x}$

Let the cost of a pen be $=₹ y$
According to the question,
The cost of a notebook is twice the cost of a pen.
i.e., cost of a notebook $=2 \times \operatorname{cost}$ of a pen
$x=2 \times y$
$x=2 y$
$x-2 y=0$
$x-2 y=0$ is the linear equation in two variables to represent the statement, 'The cost of a notebook is twice the cost of a pen.'
2. Express the following linear equations in the form $a x+b y+c=0$ and indicate the values of a, b and c in each case.
(i) $\mathbf{2 x} \mathbf{x} \mathbf{3} \mathbf{y}=9.3 \overline{5}$

Solution:

$$
2 x+3 y=9.3 \overline{5}
$$

Re-arranging the equation, we get,

$$
2 x+3 y-9.3 \overline{5}=0
$$

The equation $2 \mathrm{x}+3 \mathrm{y}-9.3 \overline{5}=0 \mathrm{can}$ be written as,

$$
2 x+3 y+(-9.3 \overline{5})=0
$$

Now comparing $2 \mathrm{x}+3 \mathrm{y}+(-9.3 \overline{5})=0$ with $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
We get,

$$
\begin{aligned}
& \mathrm{a}=2 \\
& \mathrm{~b}=3 \\
& \mathrm{c}=-9.3 \overline{5}
\end{aligned}
$$

(ii) $x-(y / 5)-10=0$

Solution:
The equation $x-(y / 5)-10=0$ can be written as,
$1 x+(-1 / 5) y+(-10)=0$
Now comparing $x+(-1 / 5) y+(-10)=0$ with $a x+b y+c=0$
We get,
$a=1$
$\mathrm{b}=-(1 / 5)$
$\mathrm{c}=-10$
(iii) $-2 x+3 y=6$

Solution:
$-2 x+3 y=6$
Re-arranging the equation, we get,
$-2 x+3 y-6=0$
The equation $-2 x+3 y-6=0$ can be written as,
$(-2) x+3 y+(-6)=0$
Now, comparing $(-2) \mathrm{x}+3 \mathrm{y}+(-6)=0$ with $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
We get, $\mathrm{a}=-2$
$\mathrm{b}=3$
$\mathrm{c}=-6$
(iv) $\mathbf{x}=3 \mathrm{y}$

Solution:
$x=3 y$
Re-arranging the equation, we get,
$x-3 y=0$
The equation $\mathrm{x}-3 \mathrm{y}=0$ can be written as,
$1 \mathrm{x}+(-3) \mathrm{y}+(0) \mathrm{c}=0$
Now comparing $1 x+(-3) y+(0) c=0$ with $a x+b y+c=0$

We get $\mathrm{a}=1$
$b=-3$
$\mathrm{c}=0$
(v) $2 x=-5 y$

Solution:
$2 x=-5 y$

Re-arranging the equation, we get,
$2 x+5 y=0$
The equation $2 x+5 y=0$ can be written as,
$2 x+5 y+0=0$
Now, comparing $2 x+5 y+0=0$ with $a x+b y+c=0$
We get $\mathrm{a}=2$
$\mathrm{b}=5$
$\mathrm{c}=0$
(vi) $3 x+2=0$

Solution:
$3 x+2=0$

The equation $3 x+2=0$ can be written as,
$3 x+0 y+2=0$

Now comparing $3 x+0+2=0$ with $a x+b y+c=0$
We get $\mathrm{a}=3$
$\mathrm{b}=0$
$\mathrm{c}=2$
(vii) $y-2=0$

Solution:
$y-2=0$
The equation $\mathrm{y}-2=0$ can be written as,
$0 x+1 y+(-2)=0$
Now comparing $0 x+1 y+(-2)=0$ with $a x+b y+c=0$
We get $\mathrm{a}=0$
$\mathrm{b}=1$
$\mathrm{c}=-2$
(viii) $5=2 x$

Solution:
$5=2 x$

Re-arranging the equation, we get,
$2 x=5$
i.e., $2 x-5=0$

The equation $2 x-5=0$ can be written as,
$2 x+0 y-5=0$
Now comparing $2 x+0 y-5=0$ with $a x+b y+c=0$
We get $\mathrm{a}=2$
$\mathrm{b}=0$
$c=-5$

