EXERCISE: 6.1

1. In Fig. 6.13, lines $A B$ and $C D$ intersect at O. If $\angle A O C+\angle B O E=70^{\circ}$ and $\angle B O D=40^{\circ}$, find $\angle B O E$ and reflex $\angle C O E$.

Fig. 6.13

Solution:

From the diagram, we have
$(\angle \mathrm{AOC}+\angle \mathrm{BOE}+\angle \mathrm{COE})$ and $(\angle \mathrm{COE}+\angle \mathrm{BOD}+\angle \mathrm{BOE})$ forms a straight line.
So, $\angle \mathrm{AOC}+\angle \mathrm{BOE}+\angle \mathrm{COE}=\angle \mathrm{COE}+\angle \mathrm{BOD}+\angle \mathrm{BOE}=180^{\circ}$
Now, by putting the values of $\angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ}$ and $\angle \mathrm{BOD}=40^{\circ}$ we get
$\angle \mathrm{COE}=110^{\circ}$ and $\angle \mathrm{BOE}=30^{\circ}$
So, reflex $\angle \mathrm{COE}=360^{\circ}-110^{\circ}=250^{\circ}$
2. In Fig. 6.14, lines $X Y$ and $M N$ intersect at O. If $\angle P O Y=90^{\circ}$ and $\mathbf{a}: b=2: 3$, find c.

Fig. 6.14

Solution:

We know that the sum of linear pair is always equal to 180°
So,
$\angle \mathrm{POY}+\mathrm{a}+\mathrm{b}=180^{\circ}$

Putting the value of $\angle \mathrm{POY}=90^{\circ}$ (as given in the question), we get,
$a+b=90^{\circ}$
Now, it is given that $a: b=2: 3$, so
Let a be 2 x and b be 3 x
$\therefore 2 \mathrm{x}+3 \mathrm{x}=90^{\circ}$
Solving this, we get
$5 \mathrm{x}=90^{\circ}$
So, $x=18^{\circ}$
$\therefore \mathrm{a}=2 \times 18^{\circ}=36^{\circ}$
Similarly, b can be calculated, and the value will be
$\mathrm{b}=3 \times 18^{\circ}=54^{\circ}$
From the diagram, $b+c$ also forms a straight angle, so
$\mathrm{b}+\mathrm{c}=180^{\circ}$
$\mathrm{c}+54^{\circ}=180^{\circ}$
$\therefore \mathrm{c}=126^{\circ}$
3. In Fig. 6.15, $\angle \mathrm{PQR}=\angle \mathrm{PRQ}$, then prove that $\angle \mathrm{PQS}=\angle \mathrm{PRT}$.

Fig. 6.15

Solution:

Since ST is a straight line, so
$\angle \mathrm{PQS}+\angle \mathrm{PQR}=180^{\circ}$ (linear pair) and
$\angle \mathrm{PRT}+\angle \mathrm{PRQ}=180^{\circ}$ (linear pair)
Now, $\angle \mathrm{PQS}+\angle \mathrm{PQR}=\angle \mathrm{PRT}+\angle \mathrm{PRQ}=180^{\circ}$
Since $\angle \mathrm{PQR}=\angle \mathrm{PRQ}$ (as given in the question)
$\angle P Q S=\angle P R T$. (Hence proved).
4. In Fig. 6.16, if $x+y=w+z$, then prove that $A O B$ is a line.

Fig. 6.16

Solution:

To prove AOB is a straight line, we will have to prove $x+y$ is a linear pair
i.e. $x+y=180^{\circ}$

We know that the angles around a point are 360°, so
$x+y+w+z=360^{\circ}$
In the question, it is given that,
$x+y=w+z$
So, $(x+y)+(x+y)=360^{\circ}$
$2(x+y)=360^{\circ}$
$\therefore(\mathrm{x}+\mathrm{y})=180^{\circ}$ (Hence proved).
5. In Fig. 6.17, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that \angle ROS $=1 / 2(\angle Q O S-\angle P O S)$.

Fig. 6.17

Solution:

In the question, it is given that $(\mathrm{OR} \perp \mathrm{PQ})$ and $\angle \mathrm{POQ}=180^{\circ}$
We can write it as $\angle \mathrm{ROP}=\angle \mathrm{ROQ}=90^{\circ}$

We know that
$\angle \mathrm{ROP}=\angle \mathrm{ROQ}$
It can be written as
$\angle \mathrm{POS}+\angle \mathrm{ROS}=\angle \mathrm{ROQ}$
$\angle \mathrm{POS}+\angle \mathrm{ROS}=\angle \mathrm{QOS}-\angle \mathrm{ROS}$
$\angle \mathrm{SOR}+\angle \mathrm{ROS}=\angle \mathrm{QOS}-\angle \mathrm{POS}$
So we get
$2 \angle \mathrm{ROS}=\angle \mathrm{QOS}-\angle \mathrm{POS}$
Or, $\angle \mathrm{ROS}=1 / 2(\angle \mathrm{QOS}-\angle \mathrm{POS})($ Hence proved $)$.
6. It is given that $\angle X Y Z=64^{\circ}$ and $X Y$ is produced to point P. Draw a figure from the given information. If ray $Y Q$ bisects $\angle Z Y P$, find $\angle X Y Q$ and reflex $\angle Q Y P$.

Solution:

Here, XP is a straight line
So, $\angle \mathrm{XYZ}+\angle Z Y P=180^{\circ}$
Putting the value of $\angle \mathrm{XYZ}=64^{\circ}$, we get
$64^{\circ}+\angle Z Y P=180^{\circ}$
$\therefore \angle \mathrm{ZYP}=116^{\circ}$
From the diagram, we also know that $\angle \mathrm{ZYP}=\angle \mathrm{ZYQ}+\angle \mathrm{QYP}$
Now, as YQ bisects $\angle Z Y P$,
$\angle Z Y Q=\angle Q Y P$
Or, $\angle Z Y P=2 \angle Z Y Q$
$\therefore \angle \mathrm{ZYQ}=\angle \mathrm{QYP}=58^{\circ}$
Again, $\angle \mathrm{XYQ}=\angle \mathrm{XYZ}+\angle \mathrm{ZYQ}$

By putting the value of $\angle \mathrm{XYZ}=64^{\circ}$ and $\angle \mathrm{ZYQ}=58^{\circ}$, we get.
$\angle \mathrm{XYQ}=64^{\circ}+58^{\circ}$
Or, $\angle \mathrm{XYQ}=122^{\circ}$
Now, reflex $\angle \mathrm{QYP}=180^{\circ}+\mathrm{XYQ}$
We computed that the value of $\angle \mathrm{XYQ}=122^{\circ}$.
So,
$\angle \mathrm{QYP}=180^{\circ}+122^{\circ}$
$\therefore \angle \mathrm{QYP}=302^{\circ}$

