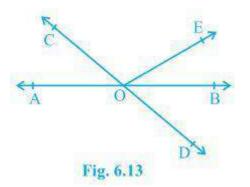


EXERCISE: 6.1

(PAGE NO: 96)

1. In Fig. 6.13, lines AB and CD intersect at O. If $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$, find $\angle BOE$ and reflex $\angle COE$.



Solution:

From the diagram, we have

 $(\angle AOC + \angle BOE + \angle COE)$ and $(\angle COE + \angle BOD + \angle BOE)$ forms a straight line.

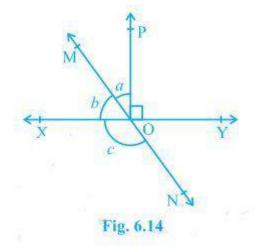
So, $\angle AOC + \angle BOE + \angle COE = \angle COE + \angle BOD + \angle BOE = 180^{\circ}$

Now, by putting the values of $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$ we get

 $\angle \text{COE} = 110^{\circ} \text{ and } \angle \text{BOE} = 30^{\circ}$

So, reflex $\angle COE = 360^{\circ} - 110^{\circ} = 250^{\circ}$

2. In Fig. 6.14, lines XY and MN intersect at O. If $\angle POY = 90^{\circ}$ and a : b = 2 : 3, find c.



Solution:

We know that the sum of linear pair is always equal to 180°

So,

 $\angle POY + a + b = 180^{\circ}$

Putting the value of $\angle POY = 90^{\circ}$ (as given in the question), we get,

 $a+b = 90^{\circ}$

Now, it is given that a:b = 2:3, so

Let a be 2x and b be 3x

 $\therefore 2x+3x = 90^{\circ}$

Solving this, we get

 $5x = 90^{\circ}$

So, $x = 18^{\circ}$

 $\therefore a = 2 \times 18^{\circ} = 36^{\circ}$

Similarly, b can be calculated, and the value will be

 $b = 3 \times 18^{\circ} = 54^{\circ}$

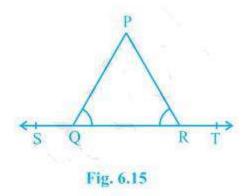
From the diagram, b+c also forms a straight angle, so

 $b + c = 180^{\circ}$

 $c + 54^{\circ} = 180^{\circ}$

 $\therefore c = 126^{\circ}$

3. In Fig. 6.15, $\angle PQR = \angle PRQ$, then prove that $\angle PQS = \angle PRT$.



Solution:

Since ST is a straight line, so

 $\angle PQS + \angle PQR = 180^{\circ}$ (linear pair) and

 $\angle PRT + \angle PRQ = 180^{\circ}$ (linear pair)

Now, $\angle PQS + \angle PQR = \angle PRT + \angle PRQ = 180^{\circ}$

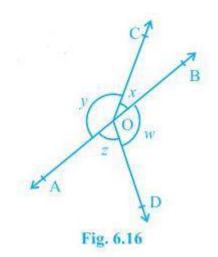
Since $\angle PQR = \angle PRQ$ (as given in the question)

 $\angle PQS = \angle PRT$. (Hence proved).

4. In Fig. 6.16, if x+y = w+z, then prove that AOB is a line.

https://byjus.com

NCERT Solutions for Class 9 Maths Chapter 6 – Lines and Angles



Solution:

To prove AOB is a straight line, we will have to prove x+y is a linear pair

i.e. $x+y = 180^{\circ}$

We know that the angles around a point are 360°, so

 $x+y+w+z = 360^{\circ}$

In the question, it is given that,

x+y = w+z

So, $(x+y)+(x+y) = 360^{\circ}$

$$2(x+y) = 360^{\circ}$$

 \therefore (x+y) = 180° (Hence proved).

5. In Fig. 6.17, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that $\angle ROS = \frac{1}{2} (\angle QOS - \angle POS)$.

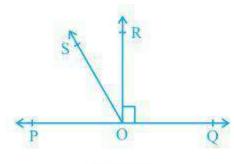


Fig. 6.17

Solution:

In the question, it is given that (OR \perp PQ) and \angle POQ = 180°

We can write it as $\angle ROP = \angle ROQ = 90^{\circ}$

https://byjus.com

We know that

 $\angle ROP = \angle ROQ$

It can be written as

 $\angle POS + \angle ROS = \angle ROQ$

 $\angle POS + \angle ROS = \angle QOS - \angle ROS$

 $\angle SOR + \angle ROS = \angle QOS - \angle POS$

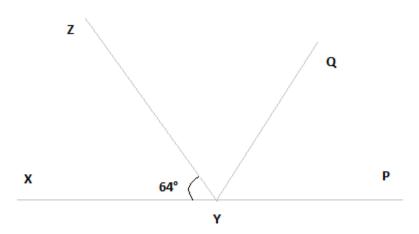
So we get

 $2 \angle ROS = \angle QOS - \angle POS$

Or, $\angle ROS = 1/2 (\angle QOS - \angle POS)$ (Hence proved).

6. It is given that $\angle XYZ = 64^{\circ}$ and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects $\angle ZYP$, find $\angle XYQ$ and reflex $\angle QYP$.

Solution:



Here, XP is a straight line

So, $\angle XYZ + \angle ZYP = 180^{\circ}$

Putting the value of $\angle XYZ = 64^\circ$, we get

 $64^{\circ} + \angle ZYP = 180^{\circ}$

 $\therefore \angle ZYP = 116^{\circ}$

From the diagram, we also know that $\angle ZYP = \angle ZYQ + \angle QYP$

Now, as YQ bisects \angle ZYP,

 $\angle ZYQ = \angle QYP$

Or, $\angle ZYP = 2 \angle ZYQ$

 $\therefore \angle ZYQ = \angle QYP = 58^{\circ}$

Again, $\angle XYQ = \angle XYZ + \angle ZYQ$

https://byjus.com

By putting the value of $\angle XYZ = 64^{\circ}$ and $\angle ZYQ = 58^{\circ}$, we get.

 $\angle XYQ = 64^{\circ} + 58^{\circ}$

Or, $\angle XYQ = 122^{\circ}$

Now, reflex $\angle QYP = 180^{\circ} + XYQ$

We computed that the value of $\angle XYQ = 122^{\circ}$.

So,

 $\angle QYP = 180^{\circ} + 122^{\circ}$

 $\therefore \angle QYP = 302^{\circ}$

