EXERCISE: 6.2

1. In Fig. 6.28, find the values of x and y and then show that $A B \| C D$.

Fig. 6.28

Solution:

We know that a linear pair is equal to 180°.
So, $x+50^{\circ}=180^{\circ}$
$\therefore \mathrm{x}=130^{\circ}$
We also know that vertically opposite angles are equal.
So, $\mathrm{y}=130^{\circ}$
In two parallel lines, the alternate interior angles are equal. In this,
$x=y=130^{\circ}$
This proves that alternate interior angles are equal, so $A B \| C D$.
2. In Fig. 6.29, if $A B\|C D, C D\| E F$ and $y: z=3: 7$, find x.

Fig. 6.29

Solution:

It is known that $\mathrm{AB} \| \mathrm{CD}$ and $\mathrm{CD} \| \mathrm{EF}$
As the angles on the same side of a transversal line sum up to 180°,

$$
x+y=180^{\circ} \text { —(i) }
$$

Also,
$\angle \mathrm{O}=\mathrm{z}$ (Since they are corresponding angles)
and, $\mathrm{y}+\angle \mathrm{O}=180^{\circ}($ Since they are a linear pair $)$
So, $y+z=180^{\circ}$
Now, let $\mathrm{y}=3 \mathrm{w}$ and hence, $\mathrm{z}=7 \mathrm{w}$ (As $\mathrm{y}: \mathrm{z}=3: 7$)
$\therefore 3 w+7 w=180^{\circ}$
Or, $10 \mathrm{w}=180^{\circ}$
So, $w=18^{\circ}$
Now, $y=3 \times 18^{\circ}=54^{\circ}$
and, $\mathrm{z}=7 \times 18^{\circ}=126^{\circ}$
Now, angle x can be calculated from equation (i)
$\mathrm{x}+\mathrm{y}=180^{\circ}$
Or, $\mathrm{x}+54^{\circ}=180^{\circ}$
$\therefore \mathrm{x}=126^{\circ}$
3. In Fig. 6.30, if $\mathrm{AB} \| \mathrm{CD}, \mathrm{EF} \perp \mathrm{CD}$ and $\angle \mathrm{GED}=126^{\circ}$, find $\angle \mathrm{AGE}, \angle \mathrm{GEF}$ and $\angle \mathrm{FGE}$.

Fig. 6.30

Solution:

Since $A B \| C D, G E$ is a transversal.
It is given that $\angle \mathrm{GED}=126^{\circ}$
So, $\angle \mathrm{GED}=\angle \mathrm{AGE}=126^{\circ}$ (As they are alternate interior angles)
Also,
$\angle \mathrm{GED}=\angle \mathrm{GEF}+\angle \mathrm{FED}$
As $\mathrm{EF} \perp \mathrm{CD}, \angle \mathrm{FED}=90^{\circ}$
$\therefore \angle \mathrm{GED}=\angle \mathrm{GEF}+90^{\circ}$
Or, $\angle \mathrm{GEF}=126^{\circ}-90^{\circ}=36^{\circ}$

Again, $\angle \mathrm{FGE}+\angle \mathrm{GED}=180^{\circ}$ (Transversal)
Putting the value of $\angle \mathrm{GED}=126^{\circ}$, we get
$\angle \mathrm{FGE}=54^{\circ}$
So,
$\angle \mathrm{AGE}=126^{\circ}$
$\angle \mathrm{GEF}=36^{\circ}$ and
$\angle \mathrm{FGE}=54^{\circ}$
4. In Fig. 6.31, if $P Q\left|\mid S T, \angle P Q R=110^{\circ}\right.$ and $\angle R S T=130^{\circ}$, find $\angle Q R S$.
[Hint : Draw a line parallel to ST through point R.]

Fig. 6.31

Solution:

First, construct a line XY parallel to $P Q$.

We know that the angles on the same side of the transversal is equal to 180°.
So, $\angle \mathrm{PQR}+\angle \mathrm{QRX}=180^{\circ}$
Or, $\angle \mathrm{QRX}=180^{\circ}-110^{\circ}$
$\therefore \angle \mathrm{QRX}=70^{\circ}$
Similarly,
$\angle \mathrm{RST}+\angle \mathrm{SRY}=180^{\circ}$
Or, $\angle \mathrm{SRY}=180^{\circ}-130^{\circ}$
$\therefore \angle \mathrm{SRY}=50^{\circ}$
Now, for the linear pairs on the line XY-
$\angle \mathrm{QRX}+\angle \mathrm{QRS}+\angle \mathrm{SRY}=180^{\circ}$
Putting their respective values, we get
$\angle \mathrm{QRS}=180^{\circ}-70^{\circ}-50^{\circ}$
Hence, $\angle \mathrm{QRS}=60^{\circ}$
5. In Fig. 6.32, if $A B \| C D, \angle A P Q=50^{\circ}$ and $\angle P R D=127^{\circ}$, find x and y.

Fig. 6.32

Solution:

From the diagram,
$\angle \mathrm{APQ}=\angle \mathrm{PQR}$ (Alternate interior angles)
Now, putting the value of $\angle \mathrm{APQ}=50^{\circ}$ and $\angle \mathrm{PQR}=\mathrm{x}$, we get
$\mathrm{x}=50^{\circ}$
Also,
$\angle \mathrm{APR}=\angle \mathrm{PRD}$ (Alternate interior angles)
Or, $\angle \mathrm{APR}=127^{\circ}\left(\mathrm{As}\right.$ it is given that $\left.\angle \mathrm{PRD}=127^{\circ}\right)$
We know that
$\angle \mathrm{APR}=\angle \mathrm{APQ}+\angle \mathrm{QPR}$
Now, putting values of $\angle \mathrm{QPR}=\mathrm{y}$ and $\angle \mathrm{APR}=127^{\circ}$, we get
$127^{\circ}=50^{\circ}+y$
Or, $y=77^{\circ}$
Thus, the values of x and y are calculated as:
$x=50^{\circ}$ and $y=77^{\circ}$
6. In Fig. 6.33, $P Q$ and RS are two mirrors placed parallel to each other. An incident ray $A B$ strikes the mirror $P Q$ at B, the reflected ray moves along the path $B C$ and strikes the mirror $R S$ at C and again reflects back along CD. Prove that $A B \| C D$.

Fig. 6.33

Solution:

First, draw two lines, BE and CF , such that $\mathrm{BE} \perp \mathrm{PQ}$ and $\mathrm{CF} \perp \mathrm{RS}$.
Now, since PQ || RS,
So, BE \| CF

We know that,
Angle of incidence $=$ Angle of reflection $($ By the law of reflection $)$
So,
$\angle 1=\angle 2$ and
$\angle 3=\angle 4$
We also know that alternate interior angles are equal. Here, $\mathrm{BE} \perp \mathrm{CF}$ and the transversal line BC cuts them at B and C
So, $\angle 2=\angle 3$ (As they are alternate interior angles)
Now, $\angle 1+\angle 2=\angle 3+\angle 4$
Or, $\angle \mathrm{ABC}=\angle \mathrm{DCB}$
So, $\mathrm{AB} \| \mathrm{CD}$ (alternate interior angles are equal)

