EXERCISE: 6.1

1. In Fig. 6.13, lines $A B$ and $C D$ intersect at O. If $\angle A O C+\angle B O E=70^{\circ}$ and $\angle B O D=40^{\circ}$, find $\angle B O E$ and reflex $\angle C O E$.

Fig. 6.13

Solution:

From the diagram, we have
$(\angle \mathrm{AOC}+\angle \mathrm{BOE}+\angle \mathrm{COE})$ and $(\angle \mathrm{COE}+\angle \mathrm{BOD}+\angle \mathrm{BOE})$ forms a straight line.
So, $\angle \mathrm{AOC}+\angle \mathrm{BOE}+\angle \mathrm{COE}=\angle \mathrm{COE}+\angle \mathrm{BOD}+\angle \mathrm{BOE}=180^{\circ}$
Now, by putting the values of $\angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ}$ and $\angle \mathrm{BOD}=40^{\circ}$ we get
$\angle \mathrm{COE}=110^{\circ}$ and $\angle \mathrm{BOE}=30^{\circ}$
So, reflex $\angle \mathrm{COE}=360^{\circ}-110^{\circ}=250^{\circ}$
2. In Fig. 6.14, lines $X Y$ and $M N$ intersect at O. If $\angle P O Y=90^{\circ}$ and $a: b=2: 3$, find c.

Fig. 6.14

Solution:

We know that the sum of linear pair is always equal to 180°
So,
$\angle \mathrm{POY}+\mathrm{a}+\mathrm{b}=180^{\circ}$

Putting the value of $\angle \mathrm{POY}=90^{\circ}$ (as given in the question), we get,
$a+b=90^{\circ}$
Now, it is given that $a: b=2: 3$, so
Let a be 2 x and b be 3 x
$\therefore 2 \mathrm{x}+3 \mathrm{x}=90^{\circ}$
Solving this, we get
$5 \mathrm{x}=90^{\circ}$
So, $x=18^{\circ}$
$\therefore \mathrm{a}=2 \times 18^{\circ}=36^{\circ}$
Similarly, b can be calculated, and the value will be
$\mathrm{b}=3 \times 18^{\circ}=54^{\circ}$
From the diagram, $b+c$ also forms a straight angle, so
$\mathrm{b}+\mathrm{c}=180^{\circ}$
$\mathrm{c}+54^{\circ}=180^{\circ}$
$\therefore \mathrm{c}=126^{\circ}$
3. In Fig. 6.15, $\angle \mathrm{PQR}=\angle \mathrm{PRQ}$, then prove that $\angle \mathrm{PQS}=\angle \mathrm{PRT}$.

Fig. 6.15

Solution:

Since ST is a straight line, so
$\angle \mathrm{PQS}+\angle \mathrm{PQR}=180^{\circ}$ (linear pair) and
$\angle \mathrm{PRT}+\angle \mathrm{PRQ}=180^{\circ}$ (linear pair)
Now, $\angle \mathrm{PQS}+\angle \mathrm{PQR}=\angle \mathrm{PRT}+\angle \mathrm{PRQ}=180^{\circ}$
Since $\angle \mathrm{PQR}=\angle \mathrm{PRQ}$ (as given in the question)
$\angle P Q S=\angle P R T$. (Hence proved).
4. In Fig. 6.16, if $x+y=w+z$, then prove that $A O B$ is a line.

Fig. 6.16

Solution:

To prove AOB is a straight line, we will have to prove $x+y$ is a linear pair
i.e. $x+y=180^{\circ}$

We know that the angles around a point are 360°, so
$x+y+w+z=360^{\circ}$
In the question, it is given that,
$x+y=w+z$
So, $(x+y)+(x+y)=360^{\circ}$
$2(x+y)=360^{\circ}$
$\therefore(\mathrm{x}+\mathrm{y})=180^{\circ}$ (Hence proved).
5. In Fig. 6.17, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that \angle ROS $=1 / 2(\angle Q O S-\angle P O S)$.

Fig. 6.17

Solution:

In the question, it is given that $(\mathrm{OR} \perp \mathrm{PQ})$ and $\angle \mathrm{POQ}=180^{\circ}$
We can write it as $\angle \mathrm{ROP}=\angle \mathrm{ROQ}=90^{\circ}$

We know that
$\angle \mathrm{ROP}=\angle \mathrm{ROQ}$
It can be written as
$\angle \mathrm{POS}+\angle \mathrm{ROS}=\angle \mathrm{ROQ}$
$\angle \mathrm{POS}+\angle \mathrm{ROS}=\angle \mathrm{QOS}-\angle \mathrm{ROS}$
$\angle \mathrm{SOR}+\angle \mathrm{ROS}=\angle \mathrm{QOS}-\angle \mathrm{POS}$
So we get
$2 \angle \mathrm{ROS}=\angle \mathrm{QOS}-\angle \mathrm{POS}$
Or, $\angle \mathrm{ROS}=1 / 2(\angle \mathrm{QOS}-\angle \mathrm{POS})($ Hence proved $)$.
6. It is given that $\angle X Y Z=64^{\circ}$ and $X Y$ is produced to point P. Draw a figure from the given information. If ray $Y Q$ bisects $\angle Z Y P$, find $\angle X Y Q$ and reflex $\angle Q Y P$.

Solution:

Here, XP is a straight line
So, $\angle \mathrm{XYZ}+\angle Z Y P=180^{\circ}$
Putting the value of $\angle \mathrm{XYZ}=64^{\circ}$, we get
$64^{\circ}+\angle Z Y P=180^{\circ}$
$\therefore \angle \mathrm{ZYP}=116^{\circ}$
From the diagram, we also know that $\angle \mathrm{ZYP}=\angle \mathrm{ZYQ}+\angle \mathrm{QYP}$
Now, as YQ bisects $\angle Z Y P$,
$\angle Z Y Q=\angle Q Y P$
Or, $\angle Z Y P=2 \angle Z Y Q$
$\therefore \angle \mathrm{ZYQ}=\angle \mathrm{QYP}=58^{\circ}$
Again, $\angle \mathrm{XYQ}=\angle \mathrm{XYZ}+\angle \mathrm{ZYQ}$

BYJU'S

By putting the value of $\angle \mathrm{XYZ}=64^{\circ}$ and $\angle \mathrm{ZYQ}=58^{\circ}$, we get.
$\angle \mathrm{XYQ}=64^{\circ}+58^{\circ}$
Or, $\angle \mathrm{XYQ}=122^{\circ}$
Now, reflex $\angle \mathrm{QYP}=180^{\circ}+\mathrm{XYQ}$
We computed that the value of $\angle \mathrm{XYQ}=122^{\circ}$.
So,
$\angle \mathrm{QYP}=180^{\circ}+122^{\circ}$
$\therefore \angle \mathrm{QYP}=302^{\circ}$

EXERCISE: 6.2

1. In Fig. 6.28, find the values of x and y and then show that $A B \| C D$.

Fig. 6.28

Solution:

We know that a linear pair is equal to 180°.
So, $x+50^{\circ}=180^{\circ}$
$\therefore \mathrm{x}=130^{\circ}$
We also know that vertically opposite angles are equal.
So, $\mathrm{y}=130^{\circ}$
In two parallel lines, the alternate interior angles are equal. In this,

$$
x=y=130^{\circ}
$$

This proves that alternate interior angles are equal, so $\mathrm{AB} \| \mathrm{CD}$.
2. In Fig. 6.29, if $A B\|C D, C D\| E F$ and $y: z=3: 7$, find x.

Fig. 6.29

Solution:

It is known that $\mathrm{AB} \| \mathrm{CD}$ and $\mathrm{CD} \| \mathrm{EF}$
As the angles on the same side of a transversal line sum up to 180°,

$$
x+y=180^{\circ} \text { —(i) }
$$

Also,
$\angle \mathrm{O}=\mathrm{z}$ (Since they are corresponding angles)
and, $\mathrm{y}+\angle \mathrm{O}=180^{\circ}($ Since they are a linear pair $)$
So, $y+z=180^{\circ}$
Now, let $\mathrm{y}=3 \mathrm{w}$ and hence, $\mathrm{z}=7 \mathrm{w}$ (As $\mathrm{y}: \mathrm{z}=3: 7$)
$\therefore 3 w+7 w=180^{\circ}$
Or, $10 \mathrm{w}=180^{\circ}$
So, $w=18^{\circ}$
Now, $y=3 \times 18^{\circ}=54^{\circ}$
and, $\mathrm{z}=7 \times 18^{\circ}=126^{\circ}$
Now, angle x can be calculated from equation (i)
$\mathrm{x}+\mathrm{y}=180^{\circ}$
Or, $\mathrm{x}+54^{\circ}=180^{\circ}$
$\therefore \mathrm{x}=126^{\circ}$
3. In Fig. 6.30, if $\mathrm{AB} \| \mathrm{CD}, \mathrm{EF} \perp \mathrm{CD}$ and $\angle \mathrm{GED}=126^{\circ}$, find $\angle \mathrm{AGE}, \angle \mathrm{GEF}$ and $\angle \mathrm{FGE}$.

Fig. 6.30

Solution:

Since $A B \| C D, G E$ is a transversal.
It is given that $\angle \mathrm{GED}=126^{\circ}$
So, $\angle \mathrm{GED}=\angle \mathrm{AGE}=126^{\circ}$ (As they are alternate interior angles)
Also,
$\angle \mathrm{GED}=\angle \mathrm{GEF}+\angle \mathrm{FED}$
As $\mathrm{EF} \perp \mathrm{CD}, \angle \mathrm{FED}=90^{\circ}$
$\therefore \angle \mathrm{GED}=\angle \mathrm{GEF}+90^{\circ}$
Or, $\angle \mathrm{GEF}=126^{\circ}-90^{\circ}=36^{\circ}$

Again, $\angle \mathrm{FGE}+\angle \mathrm{GED}=180^{\circ}$ (Transversal)
Putting the value of $\angle \mathrm{GED}=126^{\circ}$, we get
$\angle \mathrm{FGE}=54^{\circ}$
So,
$\angle \mathrm{AGE}=126^{\circ}$
$\angle \mathrm{GEF}=36^{\circ}$ and
$\angle \mathrm{FGE}=54^{\circ}$
4. In Fig. 6.31, if $P Q\left|\mid S T, \angle P Q R=110^{\circ}\right.$ and $\angle R S T=130^{\circ}$, find $\angle Q R S$.
[Hint : Draw a line parallel to ST through point R.]

Fig. 6.31

Solution:

First, construct a line XY parallel to $P Q$.

We know that the angles on the same side of the transversal is equal to 180°.
So, $\angle \mathrm{PQR}+\angle \mathrm{QRX}=180^{\circ}$
Or, $\angle \mathrm{QRX}=180^{\circ}-110^{\circ}$
$\therefore \angle \mathrm{QRX}=70^{\circ}$
Similarly,
$\angle \mathrm{RST}+\angle \mathrm{SRY}=180^{\circ}$
Or, $\angle \mathrm{SRY}=180^{\circ}-130^{\circ}$
$\therefore \angle \mathrm{SRY}=50^{\circ}$
Now, for the linear pairs on the line XY-
$\angle \mathrm{QRX}+\angle \mathrm{QRS}+\angle \mathrm{SRY}=180^{\circ}$
Putting their respective values, we get
$\angle \mathrm{QRS}=180^{\circ}-70^{\circ}-50^{\circ}$
Hence, $\angle \mathrm{QRS}=60^{\circ}$
5. In Fig. 6.32, if $A B \| C D, \angle A P Q=50^{\circ}$ and $\angle P R D=127^{\circ}$, find x and y.

Fig. 6.32

Solution:

From the diagram,
$\angle \mathrm{APQ}=\angle \mathrm{PQR}$ (Alternate interior angles)
Now, putting the value of $\angle \mathrm{APQ}=50^{\circ}$ and $\angle \mathrm{PQR}=\mathrm{x}$, we get
$\mathrm{x}=50^{\circ}$
Also,
$\angle \mathrm{APR}=\angle \mathrm{PRD}$ (Alternate interior angles)
Or, $\angle \mathrm{APR}=127^{\circ}\left(\mathrm{As}\right.$ it is given that $\left.\angle \mathrm{PRD}=127^{\circ}\right)$
We know that
$\angle \mathrm{APR}=\angle \mathrm{APQ}+\angle \mathrm{QPR}$
Now, putting values of $\angle \mathrm{QPR}=\mathrm{y}$ and $\angle \mathrm{APR}=127^{\circ}$, we get
$127^{\circ}=50^{\circ}+y$
Or, $y=77^{\circ}$
Thus, the values of x and y are calculated as:
$\mathrm{x}=50^{\circ}$ and $\mathrm{y}=77^{\circ}$
6. In Fig. 6.33, $P Q$ and RS are two mirrors placed parallel to each other. An incident ray $A B$ strikes the mirror $P Q$ at B, the reflected ray moves along the path $B C$ and strikes the mirror $R S$ at C and again reflects back along CD. Prove that $A B \| C D$.

Fig. 6.33

Solution:

First, draw two lines, BE and CF , such that $\mathrm{BE} \perp \mathrm{PQ}$ and $\mathrm{CF} \perp$ RS.
Now, since $P Q \| R S$,
So, $\mathrm{BE} \| \mathrm{CF}$

We know that,
Angle of incidence $=$ Angle of reflection $($ By the law of reflection $)$
So,
$\angle 1=\angle 2$ and
$\angle 3=\angle 4$
We also know that alternate interior angles are equal. Here, $\mathrm{BE} \perp \mathrm{CF}$ and the transversal line BC cuts them at B and C
So, $\angle 2=\angle 3$ (As they are alternate interior angles)
Now, $\angle 1+\angle 2=\angle 3+\angle 4$
Or, $\angle \mathrm{ABC}=\angle \mathrm{DCB}$
So, $\mathrm{AB} \| \mathrm{CD}$ (alternate interior angles are equal)

EXERCISE: 6.3

1. In Fig. 6.39, sides $Q P$ and $R Q$ of $\triangle P Q R$ are produced to points S and T, respectively. If $\angle S P R=135^{\circ}$ and $\angle P Q T=110^{\circ}$, find $\angle P R Q$.

Fig. 6.39

Solution:

It is given the TQR is a straight line, and so, the linear pairs (i.e. $\angle \mathrm{TQP}$ and $\angle \mathrm{PQR}$) will add up to 180°
So, $\angle \mathrm{TQP}+\angle \mathrm{PQR}=180^{\circ}$
Now, putting the value of $\angle \mathrm{TQP}=110^{\circ}$, we get
$\angle \mathrm{PQR}=70^{\circ}$
Consider the $\triangle \mathrm{PQR}$,
Here, the side QP is extended to S , and so $\angle \mathrm{SPR}$ forms the exterior angle.
Thus, $\angle \mathrm{SPR}\left(\angle \mathrm{SPR}=135^{\circ}\right)$ is equal to the sum of interior opposite angles. (Triangle property)
Or, $\angle \mathrm{PQR}+\angle \mathrm{PRQ}=135^{\circ}$
Now, putting the value of $\angle \mathrm{PQR}=70^{\circ}$, we get
$\angle \mathrm{PRQ}=135^{\circ}-70^{\circ}$
Hence, $\angle \mathrm{PRQ}=65^{\circ}$
2. In Fig. $6.40, \angle X=62^{\circ}, \angle X Y Z=54^{\circ}$. If $Y O$ and $Z O$ are the bisectors of $\angle X Y Z$ and $\angle X Z Y$, respectively of Δ $X Y Z$, find $\angle O Z Y$ and $\angle Y O Z$.

Fig. 6,40

Solution:

We know that the sum of the interior angles of the triangle.
So, $\angle \mathrm{X}+\angle \mathrm{XYZ}+\angle \mathrm{XZY}=180^{\circ}$
Putting the values as given in the question, we get
$62^{\circ}+54^{\circ}+\angle X Z Y=180^{\circ}$
Or, $\angle X Z Y=64^{\circ}$
Now, we know that ZO is the bisector, so
$\angle \mathrm{OZY}=1 / 2 \angle \mathrm{XZY}$
$\therefore \angle \mathrm{OZY}=32^{\circ}$
Similarly, YO is a bisector, so
$\angle O Y Z=1 / 2 \angle X Y Z$
Or, $\angle \mathrm{OYZ}=27^{\circ}\left(\mathrm{As} \angle \mathrm{XYZ}=54^{\circ}\right)$
Now, as the sum of the interior angles of the triangle,
$\angle \mathrm{OZY}+\angle \mathrm{OYZ}+\angle \mathrm{O}=180^{\circ}$
Putting their respective values, we get
$\angle \mathrm{O}=180^{\circ}-32^{\circ}-27^{\circ}$
Hence, $\angle \mathrm{O}=121^{\circ}$
3. In Fig. 6.41, if $\mathrm{AB} \| \mathrm{DE}, \angle \mathrm{BAC}=35^{\circ}$ and $\angle \mathrm{CDE}=53^{\circ}$, find $\angle \mathrm{DCE}$.

Fig. 6.41

Solution:

We know that AE is a transversal since $\mathrm{AB} \| \mathrm{DE}$
Here $\angle \mathrm{BAC}$ and $\angle \mathrm{AED}$ are alternate interior angles.
Hence, $\angle \mathrm{BAC}=\angle \mathrm{AED}$
It is given that $\angle \mathrm{BAC}=35^{\circ}$
$\angle \mathrm{AED}=35^{\circ}$
Now consider the triangle CDE. We know that the sum of the interior angles of a triangle is 180°.
$\therefore \angle \mathrm{DCE}+\angle \mathrm{CED}+\angle \mathrm{CDE}=180^{\circ}$

Putting the values, we get
$\angle \mathrm{DCE}+35^{\circ}+53^{\circ}=180^{\circ}$
Hence, $\angle \mathrm{DCE}=92^{\circ}$
4. In Fig. 6.42, if lines $P Q$ and $R S$ intersect at point T, such that $\angle P R T=40^{\circ}, \angle R P T=95^{\circ}$ and $\angle T S Q=75^{\circ}$, find $\angle S Q T$.

Solution:

Consider triangle PRT.
$\angle \mathrm{PRT}+\angle \mathrm{RPT}+\angle \mathrm{PTR}=180^{\circ}$
So, $\angle \mathrm{PTR}=45^{\circ}$
Now $\angle \mathrm{PTR}$ will be equal to $\angle \mathrm{STQ}$ as they are vertically opposite angles.
$\mathrm{So}, \angle \mathrm{PTR}=\angle \mathrm{STQ}=45^{\circ}$
Again, in triangle STQ,
$\angle \mathrm{TSQ}+\angle \mathrm{PTR}+\angle \mathrm{SQT}=180^{\circ}$
Solving this, we get
$74^{\circ}+45^{\circ}+\angle \mathrm{SQT}=180^{\circ}$
$\angle \mathrm{SQT}=60^{\circ}$
5. In Fig. 6.43, if $P Q \perp P S, P Q \| S R, \angle S Q R=28^{\circ}$ and $\angle Q R T=65^{\circ}$, then find the values of x and y.

Fig. 6.43

Solution:

$\mathrm{x}+\angle \mathrm{SQR}=\angle \mathrm{QRT}$ (As they are alternate angles since QR is transversal)
So, $x+28^{\circ}=65^{\circ}$
$\therefore \mathrm{x}=37^{\circ}$
It is also known that alternate interior angles are the same, and so
$\angle \mathrm{QSR}=\mathrm{x}=37^{\circ}$
Also, now
$\angle \mathrm{QRS}+\angle \mathrm{QRT}=180^{\circ}$ (As they are a Linear pair)
Or, $\angle \mathrm{QRS}+65^{\circ}=180^{\circ}$
So, $\angle \mathrm{QRS}=115^{\circ}$
Using the angle sum property in $\triangle \mathrm{SPQ}$,
$\angle \mathrm{SPQ}+\mathrm{x}+\mathrm{y}=180^{\circ}$
Putting their respective values, we get
$90^{\circ}+37^{\circ}+y=180^{\circ}$
$y=180^{\circ}-127^{\circ}=53^{\circ}$
Hence, $\mathrm{y}=53^{\circ}$
6. In Fig. 6.44, the side $Q R$ of $\triangle P Q R$ is produced to a point S. If the bisectors of $\angle P Q R$ and $\angle P R S$ meet at point T, then prove that $\angle \mathrm{QTR}=1 / 2 \angle \mathrm{QPR}$.

Fig. 6.44

Solution:

Consider the $\triangle \mathrm{PQR} . \angle \mathrm{PRS}$ is the exterior angle, and $\angle \mathrm{QPR}$ and $\angle \mathrm{PQR}$ are the interior angles.
So, $\angle \mathrm{PRS}=\angle \mathrm{QPR}+\angle \mathrm{PQR}$ (According to triangle property)
Or, $\angle \mathrm{PRS}-\angle \mathrm{PQR}=\angle \mathrm{QPR}$
Now, consider the $\triangle \mathrm{QRT}$,
$\angle \mathrm{TRS}=\angle \mathrm{TQR}+\angle \mathrm{QTR}$
Or, $\angle \mathrm{QTR}=\angle \mathrm{TRS}-\angle \mathrm{TQR}$
We know that QT and RT bisect $\angle \mathrm{PQR}$ and $\angle \mathrm{PRS}$, respectively.
$\mathrm{So}, \angle \mathrm{PRS}=2 \angle \mathrm{TRS}$ and $\angle \mathrm{PQR}=2 \angle \mathrm{TQR}$
Now, $\angle \mathrm{QTR}=1 / 2 \angle \mathrm{PRS}-1 / 2 \angle \mathrm{PQR}$
Or, $\angle \mathrm{QTR}=1 / 2(\angle \mathrm{PRS}-\angle \mathrm{PQR})$
From (i), we know that $\angle \mathrm{PRS}-\angle \mathrm{PQR}=\angle \mathrm{QPR}$
So, $\angle \mathrm{QTR}=1 / 2 \angle \mathrm{QPR}$ (hence proved).

