EXERCISE: 7.1

1. In quadrilateral $\mathrm{ACBD}, \mathrm{AC}=\mathrm{AD}$ and AB bisect $\angle \mathrm{A}$ (see Fig. 7.16). Show that $\triangle \mathrm{ABC} \cong \triangle \mathrm{ABD}$. What can you say about BC and BD?

Fig. 7.16

Solution:

It is given that AC and AD are equal i.e. $\mathrm{AC}=\mathrm{AD}$ and the line segment AB bisects $\angle \mathrm{A}$.
We will have to now prove that the two triangles ABC and ABD are similar i.e. $\triangle \mathrm{ABC} \cong \triangle \mathrm{ABD}$
Proof:
Consider the triangles $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ABD}$,
(i) $\mathrm{AC}=\mathrm{AD}$ (It is given in the question)
(ii) $\mathrm{AB}=\mathrm{AB}$ (Common)
(iii) $\angle \mathrm{CAB}=\angle \mathrm{DAB}$ (Since AB is the bisector of angle A$)$

So, by SAS congruency criterion, $\triangle \mathrm{ABC} \cong \triangle \mathrm{ABD}$.
For the $2^{\text {nd }}$ part of the question, BC and BD are of equal lengths by the rule of C.P.C.T.
2. ABCD is a quadrilateral in which $\mathrm{AD}=\mathrm{BC}$ and $\angle \mathrm{DAB}=\angle \mathrm{CBA}$ (see Fig. 7.17). Prove that
(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$
(ii) $\mathrm{BD}=\mathrm{AC}$
(iii) $\angle \mathrm{ABD}=\angle \mathrm{BAC}$.

Fig. 7.17

Solution:

The given parameters from the questions are $\angle \mathrm{DAB}=\angle \mathrm{CBA}$ and $\mathrm{AD}=\mathrm{BC}$.
(i) $\triangle \mathrm{ABD}$ and $\triangle \mathrm{BAC}$ are similar by SAS congruency as
$\mathrm{AB}=\mathrm{BA}$ (It is the common arm)
$\angle \mathrm{DAB}=\angle \mathrm{CBA}$ and $\mathrm{AD}=\mathrm{BC}$ (These are given in the question)
So, triangles $A B D$ and $B A C$ are similar i.e. $\triangle A B D \cong \triangle B A C$. (Hence proved).
(ii) It is now known that $\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$ so,
$\mathrm{BD}=\mathrm{AC}$ (by the rule of CPCT).
(iii) Since $\triangle A B D \cong \triangle B A C$ so,

Angles $\angle \mathrm{ABD}=\angle \mathrm{BAC}$ (by the rule of CPCT).
3. $A D$ and $B C$ are equal perpendiculars to a line segment $A B$ (see Fig. 7.18). Show that CD bisects $A B$.

Fig. 7.18

Solution:

It is given that AD and BC are two equal perpendiculars to AB .
We will have to prove that $\mathbf{C D}$ is the bisector of $\mathbf{A B}$
Now,
Triangles $\triangle \mathrm{AOD}$ and $\triangle \mathrm{BOC}$ are similar by AAS congruency since:
(i) $\angle \mathrm{A}=\angle \mathrm{B}$ (They are perpendiculars)
(ii) $\mathrm{AD}=\mathrm{BC}$ (As given in the question)
(iii) $\angle \mathrm{AOD}=\angle \mathrm{BOC}$ (They are vertically opposite angles)
$\therefore \triangle \mathrm{AOD} \cong \triangle \mathrm{BOC}$.
So, $\mathrm{AO}=\mathrm{OB}$ (by the rule of CPCT).
Thus, CD bisects AB (Hence proved).
4. l and m are two parallel lines intersected by another pair of parallel lines p and q (see Fig. 7.19). Show that $\Delta \mathrm{ABC} \cong \Delta \mathrm{CDA}$.

Fig. 7.19

Solution:

It is given that $\mathrm{p} \| \mathrm{q}$ and $\mathrm{l} \| \mathrm{m}$
To prove:
Triangles ABC and CDA are similar i.e. $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$
Proof:
Consider the $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDA}$,
(i) $\angle \mathrm{BCA}=\angle \mathrm{DAC}$ and $\angle \mathrm{BAC}=\angle \mathrm{DCA}$ Since they are alternate interior angles
(ii) $\mathrm{AC}=\mathrm{CA}$ as it is the common arm

So, by ASA congruency criterion, $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$.
5. Line l is the bisector of an angle $\angle A$ and B is any point on l. $B P$ and $B Q$ are perpendiculars from B to the arms of $\angle A$ (see Fig. 7.20). Show that:
(i) $\triangle \mathrm{APB} \cong \triangle \mathrm{AQB}$
(ii) $\mathrm{BP}=\mathrm{BQ}$ or B is equidistant from the arms of $\angle \mathrm{A}$.

Fig. 7.20

Solution:

It is given that the line " l " is the bisector of angle $\angle \mathrm{A}$ and the line segments BP and BQ are perpendiculars drawn from l.
(i) $\triangle \mathrm{APB}$ and $\triangle \mathrm{AQB}$ are similar by AAS congruency because:
$\angle \mathrm{P}=\angle \mathrm{Q}$ (They are the two right angles)
$\mathrm{AB}=\mathrm{AB}$ (It is the common arm)
$\angle \mathrm{BAP}=\angle \mathrm{BAQ}$ (As line l is the bisector of angle A)
So, $\triangle \mathrm{APB} \cong \triangle \mathrm{AQB}$.
(ii) By the rule of $\mathrm{CPCT}, \mathrm{BP}=\mathrm{BQ}$. So, it can be said the point B is equidistant from the arms of $\angle \mathrm{A}$.
6. In Fig. 7.21, $\mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD}$ and $\angle \mathrm{BAD}=\angle \mathrm{EAC}$. Show that $\mathrm{BC}=\mathrm{DE}$.

Fig. 7.21

Solution:

It is given in the question that $\mathrm{AB}=\mathrm{AD}, \mathrm{AC}=\mathrm{AE}$, and $\angle \mathrm{BAD}=\angle \mathrm{EAC}$

To prove:

The line segment BC and DE are similar i.e. $\mathrm{BC}=\mathrm{DE}$

Proof:

We know that $\angle \mathrm{BAD}=\angle \mathrm{EAC}$
Now, by adding $\angle \mathrm{DAC}$ on both sides we get,
$\angle \mathrm{BAD}+\angle \mathrm{DAC}=\angle \mathrm{EAC}+\angle \mathrm{DAC}$
This implies, $\angle \mathrm{BAC}=\angle \mathrm{EAD}$
Now, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADE}$ are similar by SAS congruency since:
(i) $\mathrm{AC}=\mathrm{AE}$ (As given in the question)
(ii) $\angle \mathrm{BAC}=\angle \mathrm{EAD}$
(iii) $\mathrm{AB}=\mathrm{AD}$ (It is also given in the question)
\therefore Triangles ABC and ADE are similar i.e. $\triangle \mathrm{ABC} \cong \triangle \mathrm{ADE}$.
So, by the rule of CPCT, it can be said that $\mathrm{BC}=\mathrm{DE}$.
7. $A B$ is a line segment and P is its mid-point. D and E are points on the same side of $A B$ such that $\angle B A D=$ $\angle \mathrm{ABE}$ and $\angle \mathrm{EPA}=\angle \mathrm{DPB}$ (see Fig. 7.22). Show that
(i) $\triangle \mathrm{DAP} \cong \triangle E B P$
(ii) $\mathrm{AD}=\mathrm{BE}$

Fig. 7.22

Solutions:

In the question, it is given that P is the mid-point of line segment AB . Also, $\angle \mathrm{BAD}=\angle \mathrm{ABE}$ and $\angle \mathrm{EPA}=\angle \mathrm{DPB}$
(i) It is given that $\angle \mathrm{EPA}=\angle \mathrm{DPB}$

Now, add $\angle \mathrm{DPE}$ on both sides,
$\angle \mathrm{EPA}+\angle \mathrm{DPE}=\angle \mathrm{DPB}+\angle \mathrm{DPE}$
This implies that angles DPA and EPB are equal i.e. $\angle \mathrm{DPA}=\angle \mathrm{EPB}$
Now, consider the triangles DAP and EBP.
$\angle \mathrm{DPA}=\angle \mathrm{EPB}$
$\mathrm{AP}=\mathrm{BP}($ Since P is the mid-point of the line segment AB$)$
$\angle \mathrm{BAD}=\angle \mathrm{ABE}$ (As given in the question)
So, by ASA congruency, $\triangle \mathrm{DAP} \cong \triangle \mathrm{EBP}$.
(ii) By the rule of $\mathrm{CPCT}, \mathrm{AD}=\mathrm{BE}$.
8. In right triangle $A B C$, right angled at C, M is the mid-point of hypotenuse $A B$. C is joined to M and produced to a point D such that $D M=C M$. Point D is joined to point B (see Fig. 7.23). Show that:
(i) $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$
(ii) $\angle \mathrm{DBC}$ is a right angle.
(iii) $\triangle \mathrm{DBC} \cong \triangle \mathrm{ACB}$
(iv) $\mathrm{CM}=1 / 2 \mathrm{AB}$

Fig. 7.23

Solution:

It is given that M is the mid-point of the line segment $\mathrm{AB}, \angle \mathrm{C}=90^{\circ}$, and $\mathrm{DM}=\mathrm{CM}$
(i) Consider the triangles $\triangle \mathrm{AMC}$ and $\triangle \mathrm{BMD}$:
$\mathrm{AM}=\mathrm{BM}$ (Since M is the mid-point)
$\mathrm{CM}=\mathrm{DM}$ (Given in the question)
$\angle \mathrm{CMA}=\angle \mathrm{DMB}$ (They are vertically opposite angles)
So, by SAS congruency criterion, $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$.
(ii) $\angle \mathrm{ACM}=\angle \mathrm{BDM}$ (by CPCT)
$\therefore \mathrm{AC} \| \mathrm{BD}$ as alternate interior angles are equal.
Now, $\angle \mathrm{ACB}+\angle \mathrm{DBC}=180^{\circ}$ (Since they are co-interiors angles)
$\Rightarrow 90^{\circ}+\angle \mathrm{B}=180^{\circ}$
$\therefore \angle \mathrm{DBC}=90^{\circ}$
(iii) In $\triangle \mathrm{DBC}$ and $\triangle \mathrm{ACB}$,
$\mathrm{BC}=\mathrm{CB}$ (Common side)
$\angle \mathrm{ACB}=\angle \mathrm{DBC}$ (They are right angles)
$\mathrm{DB}=\mathrm{AC}($ by CPCT $)$
So, $\triangle \mathrm{DBC} \cong \triangle \mathrm{ACB}$ by SAS congruency.
(iv) $\mathrm{DC}=\mathrm{AB}$ (Since $\triangle \mathrm{DBC} \cong \triangle \mathrm{ACB}$)
$\Rightarrow \mathrm{DM}=\mathrm{CM}=\mathrm{AM}=\mathrm{BM}$ (Since M the is mid-point)
So, $D M+C M=B M+A M$
Hence, $\mathrm{CM}+\mathrm{CM}=\mathrm{AB}$
$\Rightarrow \mathrm{CM}=(1 / 2) \mathrm{AB}$

