

NCERT Solutions for Class 9 Maths Chapter 7 – Geometry of Triangles

EXERCISE: 7.1

(PAGE NO: 118)

1. In quadrilateral ACBD, AC = AD and AB bisect $\angle A$ (see Fig. 7.16). Show that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?

Solution:

It is given that AC and AD are equal i.e. AC = AD and the line segment AB bisects $\angle A$.

We will have to now prove that the two triangles ABC and ABD are similar i.e. $\triangle ABC \cong \triangle ABD$

Proof:

Consider the triangles $\triangle ABC$ and $\triangle ABD$,

(i) AC = AD (It is given in the question)

(ii) AB = AB (Common)

(iii) $\angle CAB = \angle DAB$ (Since AB is the bisector of angle A)

So, by **SAS congruency criterion**, $\triangle ABC \cong \triangle ABD$.

For the 2nd part of the question, BC and BD are of equal lengths by the rule of C.P.C.T.

2. ABCD is a quadrilateral in which AD = BC and ∠DAB = ∠CBA (see Fig. 7.17). Prove that

- (i) $\triangle ABD \cong \triangle BAC$
- (ii) BD = AC
- (iii) ∠ABD = ∠BAC.

NCERT Solutions for Class 9 Maths Chapter 7 – Geometry of Triangles

Solution:

The given parameters from the questions are $\angle DAB = \angle CBA$ and AD = BC.

(i) $\triangle ABD$ and $\triangle BAC$ are similar by SAS congruency as

AB = BA (It is the common arm)

 \angle DAB = \angle CBA and AD = BC (These are given in the question)

So, triangles ABD and BAC are similar i.e. $\triangle ABD \cong \triangle BAC$. (Hence proved).

(ii) It is now known that $\triangle ABD \cong \triangle BAC$ so,

BD = AC (by the rule of CPCT).

(iii) Since $\triangle ABD \cong \triangle BAC$ so,

Angles $\angle ABD = \angle BAC$ (by the rule of CPCT).

3. AD and BC are equal perpendiculars to a line segment AB (see Fig. 7.18). Show that CD bisects AB.

Fig. 7.18

Solution:

It is given that AD and BC are two equal perpendiculars to AB.

We will have to prove that CD is the bisector of AB

Now,

Triangles $\triangle AOD$ and $\triangle BOC$ are similar by AAS congruency since:

(i) $\angle A = \angle B$ (They are perpendiculars)

https://byjus.com

(ii) AD = BC (As given in the question)

(iii) $\angle AOD = \angle BOC$ (They are vertically opposite angles)

 $\therefore \Delta AOD \cong \Delta BOC.$

So, AO = OB (by the rule of CPCT).

Thus, CD bisects AB (Hence proved).

4. *l* and *m* are two parallel lines intersected by another pair of parallel lines p and q (see Fig. 7.19). Show that $\triangle ABC \cong \triangle CDA$.

Solution:

It is given that $p \parallel q$ and $1 \parallel m$

To prove:

Triangles ABC and CDA are similar i.e. $\triangle ABC \cong \triangle CDA$

Proof:

Consider the $\triangle ABC$ and $\triangle CDA$,

(i) $\angle BCA = \angle DAC$ and $\angle BAC = \angle DCA$ Since they are alternate interior angles

(ii) AC = CA as it is the common arm

So, by **ASA congruency criterion**, $\triangle ABC \cong \triangle CDA$.

5. Line l is the bisector of an angle $\angle A$ and B is any point on *l*. BP and BQ are perpendiculars from B to the arms of $\angle A$ (see Fig. 7.20). Show that:

(i) $\triangle APB \cong \triangle AQB$

(ii) BP = BQ or B is equidistant from the arms of $\angle A$.

Fig. 7.20

https://byjus.com

NCERT Solutions for Class 9 Maths Chapter 7 – Geometry of Triangles

Solution:

It is given that the line "l" is the bisector of angle $\angle A$ and the line segments BP and BQ are perpendiculars drawn from *l*.

(i) $\triangle APB$ and $\triangle AQB$ are similar by AAS congruency because:

 $\angle P = \angle Q$ (They are the two right angles)

AB = AB (It is the common arm)

 $\angle BAP = \angle BAQ$ (As line *l* is the bisector of angle A)

So, $\triangle APB \cong \triangle AQB$.

(ii) By the rule of CPCT, BP = BQ. So, it can be said the point B is equidistant from the arms of $\angle A$.

6. In Fig. 7.21, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE.

Solution:

It is given in the question that AB = AD, AC = AE, and $\angle BAD = \angle EAC$

To prove:

The line segment BC and DE are similar i.e. BC = DE

Proof:

We know that $\angle BAD = \angle EAC$

Now, by adding ∠DAC on both sides we get,

 $\angle BAD + \angle DAC = \angle EAC + \angle DAC$

This implies, $\angle BAC = \angle EAD$

Now, $\triangle ABC$ and $\triangle ADE$ are similar by SAS congruency since:

(i) AC = AE (As given in the question)

(ii) $\angle BAC = \angle EAD$

(iii) AB = AD (It is also given in the question)

 \therefore Triangles ABC and ADE are similar i.e. \triangle ABC $\cong \triangle$ ADE.

So, by the rule of CPCT, it can be said that BC = DE.

https://byjus.com

7. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$ (see Fig. 7.22). Show that

(i) $\Delta DAP \cong \Delta EBP$

(ii) AD = BE

Solutions:

In the question, it is given that P is the mid-point of line segment AB. Also, $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$

(i) It is given that $\angle EPA = \angle DPB$

Now, add $\angle DPE$ on both sides,

 $\angle EPA + \angle DPE = \angle DPB + \angle DPE$

This implies that angles DPA and EPB are equal i.e. \angle DPA = \angle EPB

Now, consider the triangles DAP and EBP.

 $\angle DPA = \angle EPB$

AP = BP (Since P is the mid-point of the line segment AB)

 $\angle BAD = \angle ABE$ (As given in the question)

So, by **ASA congruency**, $\triangle DAP \cong \triangle EBP$.

(ii) By the rule of CPCT, AD = BE.

8. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see Fig. 7.23). Show that:

(i) $\triangle AMC \cong \triangle BMD$

(ii) \angle DBC is a right angle.

(iii) $\triangle DBC \cong \triangle ACB$

(iv) $CM = \frac{1}{2}AB$

Fig. 7.23

Solution:

It is given that M is the mid-point of the line segment AB, $\angle C = 90^{\circ}$, and DM = CM

- (i) Consider the triangles \triangle AMC and \triangle BMD:
- AM = BM (Since M is the mid-point)
- CM = DM (Given in the question)
- \angle CMA = \angle DMB (They are vertically opposite angles)
- So, by **SAS congruency criterion**, $\triangle AMC \cong \triangle BMD$.
- (ii) $\angle ACM = \angle BDM$ (by CPCT)
- \therefore AC || BD as alternate interior angles are equal.
- Now, $\angle ACB + \angle DBC = 180^{\circ}$ (Since they are co-interiors angles)
- $\Rightarrow 90^{\circ} + \angle B = 180^{\circ}$
- $\therefore \angle DBC = 90^{\circ}$
- (iii) In \triangle DBC and \triangle ACB,
- BC = CB (Common side)
- $\angle ACB = \angle DBC$ (They are right angles)
- DB = AC (by CPCT)
- So, $\triangle DBC \cong \triangle ACB$ by **SAS congruency**.
- (iv) DC = AB (Since $\triangle DBC \cong \triangle ACB$)
- \Rightarrow DM = CM = AM = BM (Since M the is mid-point)
- So, DM + CM = BM + AM
- Hence, CM + CM = AB
- \Rightarrow CM = (1/2) AB