

EXERCISE: 7.2

(PAGE NO: 123)

1. In an isosceles triangle ABC, with AB = AC, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that:

(i) OB = OC (ii) AO bisects ∠A

Solution:

Given:

AB = AC and

the bisectors of ∠B and ∠C intersect each other at O

(i) Since ABC is an isosceles with AB = AC,

 $\angle B = \angle C$

 $\frac{1}{2} \angle B = \frac{1}{2} \angle C$

 $\Rightarrow \angle OBC = \angle OCB$ (Angle bisectors)

 \therefore OB = OC (Side opposite to the equal angles are equal.)

(ii) In \triangle AOB and \triangle AOC,

AB = AC (Given in the question)

AO = AO (Common arm)

OB = OC (As Proved Already)

So, $\triangle AOB \cong \triangle AOC$ by SSS congruence condition.

BAO = CAO (by CPCT)

Thus, AO bisects ∠A.

2. In $\triangle ABC$, AD is the perpendicular bisector of BC (see Fig. 7.30). Show that $\triangle ABC$ is an isosceles triangle in which AB = AC.

Solution:

It is given that AD is the perpendicular bisector of BC

To prove:

AB = AC

Proof:

In $\triangle ADB$ and $\triangle ADC$,

AD = AD (It is the Common arm)

 $\angle ADB = \angle ADC$

BD = CD (Since AD is the perpendicular bisector)

So, \triangle ADB \cong \triangle ADC by **SAS congruency criterion**.

Thus,

AB = AC (by CPCT)

3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see Fig. 7.31). Show that these altitudes are equal.

Solution:

Given:

- (i) BE and CF are altitudes.
- (ii) AC = AB

To prove:

BE = CF

Proof:

Triangles \triangle AEB and \triangle AFC are similar by AAS congruency since

 $\angle A = \angle A$ (It is the common arm)

 $\angle AEB = \angle AFC$ (They are right angles)

AB = AC (Given in the question)

 $\therefore \triangle AEB \cong \triangle AFC$ and so, BE = CF (by CPCT).

- 4. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Fig. 7.32). Show that
- (i) $\triangle ABE \cong \triangle ACF$
- (ii) AB = AC, i.e., ABC is an isosceles triangle.

Solution:

It is given that BE = CF

(i) In \triangle ABE and \triangle ACF,

 $\angle A = \angle A$ (It is the common angle)

 $\angle AEB = \angle AFC$ (They are right angles)

BE = CF (Given in the question)

- $\therefore \triangle ABE \cong \triangle ACF$ by **AAS** congruency condition.
- (ii) AB = AC by CPCT and so, ABC is an isosceles triangle.
- 5. ABC and DBC are two isosceles triangles on the same base BC (see Fig. 7.33). Show that \angle ABD = \angle ACD.

Solution:

In the question, it is given that ABC and DBC are two isosceles triangles.

We will have to show that $\angle ABD = \angle ACD$

Proof:

Triangles \triangle ABD and \triangle ACD are similar by SSS congruency since

AD = AD (It is the common arm)

AB = AC (Since ABC is an isosceles triangle)

BD = CD (Since BCD is an isosceles triangle)

So, $\triangle ABD \cong \triangle ACD$.

 \therefore \angle ABD = \angle ACD by CPCT.

6. $\triangle ABC$ is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see Fig. 7.34). Show that $\angle BCD$ is a right angle.

Solution:

It is given that AB = AC and AD = AB

We will have to now prove ∠BCD is a right angle.

Proof:

Consider $\triangle ABC$,

AB = AC (It is given in the question)

Also, $\angle ACB = \angle ABC$ (They are angles opposite to the equal sides and so, they are equal)

Now, consider \triangle ACD,

AD = AB

Also, $\angle ADC = \angle ACD$ (They are angles opposite to the equal sides and so, they are equal)

Now,

In ΔABC,

$$\angle CAB + \angle ACB + \angle ABC = 180^{\circ}$$

So,
$$\angle CAB + 2\angle ACB = 180^{\circ}$$

$$\Rightarrow \angle CAB = 180^{\circ} - 2\angle ACB - (i)$$

Similarly, in $\triangle ADC$,

$$\angle CAD = 180^{\circ} - 2\angle ACD - (ii)$$

also,

$$\angle CAB + \angle CAD = 180^{\circ}$$
 (BD is a straight line.)

Adding (i) and (ii) we get,

$$\angle CAB + \angle CAD = 180^{\circ} - 2\angle ACB + 180^{\circ} - 2\angle ACD$$

$$\Rightarrow 180^{\circ} = 360^{\circ} - 2 \angle ACB - 2 \angle ACD$$

$$\Rightarrow 2(\angle ACB + \angle ACD) = 180^{\circ}$$

$$\Rightarrow \angle BCD = 90^{\circ}$$

7. ABC is a right-angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.

Solution:

In the question, it is given that

$$\angle A = 90^{\circ}$$
 and $AB = AC$

$$AB = AC$$

 \Rightarrow \angle B = \angle C (They are angles opposite to the equal sides and so, they are equal)

Now

 $\angle A + \angle B + \angle C = 180^{\circ}$ (Since the sum of the interior angles of the triangle)

$$\therefore 90^{\circ} + 2 \angle B = 180^{\circ}$$

$$\Rightarrow 2\angle B = 90^{\circ}$$

$$\Rightarrow \angle B = 45^{\circ}$$

So,
$$\angle B = \angle C = 45^{\circ}$$

8. Show that the angles of an equilateral triangle are 60° each.

Solution:

Let ABC be an equilateral triangle as shown below:

Here, BC = AC = AB (Since the length of all sides is same)

 $\Rightarrow \angle A = \angle B = \angle C$ (Sides opposite to the equal angles are equal.)

Also, we know that

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow 3\angle A = 180^{\circ}$$

$$\Rightarrow \angle A = 60^{\circ}$$

$$\therefore \angle A = \angle B = \angle C = 60^{\circ}$$

So, the angles of an equilateral triangle are always 60° each.