EXERCISE: 7.2

1. In an isosceles triangle $A B C$, with $A B=A C$, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that:
(i) $\mathrm{OB}=\mathrm{OC}$ (ii) AO bisects $\angle \mathrm{A}$

Solution:

Given:
$\mathrm{AB}=\mathrm{AC}$ and
the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ intersect each other at O
(i) Since $A B C$ is an isosceles with $A B=A C$,
$\angle \mathrm{B}=\angle \mathrm{C}$
$1 / 2 \angle \mathrm{~B}=1 / 2 \angle \mathrm{C}$
$\Rightarrow \angle \mathrm{OBC}=\angle \mathrm{OCB}$ (Angle bisectors)
$\therefore \mathrm{OB}=\mathrm{OC}$ (Side opposite to the equal angles are equal.)
(ii) In $\triangle A O B$ and $\triangle A O C$,
$\mathrm{AB}=\mathrm{AC}$ (Given in the question)
$\mathrm{AO}=\mathrm{AO}$ (Common arm)
$\mathrm{OB}=\mathrm{OC}$ (As Proved Already)
So, $\triangle \mathrm{AOB} \cong \triangle \mathrm{AOC}$ by SSS congruence condition.
$\mathrm{BAO}=\mathrm{CAO}($ by CPCT $)$
Thus, AO bisects $\angle \mathrm{A}$.
2. In $\triangle \mathrm{ABC}, \mathrm{AD}$ is the perpendicular bisector of BC (see Fig. 7.30). Show that $\triangle \mathrm{ABC}$ is an isosceles triangle in which $A B=A C$.

Fig. 7.30

Solution:

It is given that $A D$ is the perpendicular bisector of $B C$
To prove:
$\mathrm{AB}=\mathrm{AC}$

Proof:

In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ADC}$,
$\mathrm{AD}=\mathrm{AD}$ (It is the Common arm)
$\angle \mathrm{ADB}=\angle \mathrm{ADC}$
$\mathrm{BD}=\mathrm{CD}$ (Since AD is the perpendicular bisector)
So, $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$ by SAS congruency criterion.
Thus,
$\mathrm{AB}=\mathrm{AC}($ by CPCT $)$
3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see Fig. 7.31). Show that these altitudes are equal.

Fig. 7.31

Solution:

Given:
(i) BE and CF are altitudes.
(ii) $\mathrm{AC}=\mathrm{AB}$

To prove:
$\mathrm{BE}=\mathrm{CF}$

Proof:

Triangles $\triangle \mathrm{AEB}$ and $\triangle \mathrm{AFC}$ are similar by AAS congruency since
$\angle \mathrm{A}=\angle \mathrm{A}$ (It is the common arm)
$\angle \mathrm{AEB}=\angle \mathrm{AFC}$ (They are right angles)
$\mathrm{AB}=\mathrm{AC}$ (Given in the question)
$\therefore \triangle \mathrm{AEB} \cong \triangle \mathrm{AFC}$ and so, $\mathrm{BE}=\mathrm{CF}($ by CPCT$)$.
4. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Fig. 7.32). Show that
(i) $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$
(ii) $\mathrm{AB}=\mathrm{AC}$, i.e., ABC is an isosceles triangle.

Fig. 7.32

Solution:

It is given that $\mathrm{BE}=\mathrm{CF}$
(i) In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{ACF}$,
$\angle \mathrm{A}=\angle \mathrm{A}$ (It is the common angle)
$\angle \mathrm{AEB}=\angle \mathrm{AFC}$ (They are right angles)
$\mathrm{BE}=\mathrm{CF}$ (Given in the question)
$\therefore \triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$ by AAS congruency condition.
(ii) $\mathrm{AB}=\mathrm{AC}$ by CPCT and so, ABC is an isosceles triangle.
5. ABC and DBC are two isosceles triangles on the same base BC (see Fig. 7.33). Show that $\angle A B D=\angle A C D$.

Fig. 7.33

Solution:

In the question, it is given that ABC and DBC are two isosceles triangles.
We will have to show that $\angle \mathrm{ABD}=\angle \mathrm{ACD}$
Proof:
Triangles $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$ are similar by SSS congruency since
$\mathrm{AD}=\mathrm{AD}$ (It is the common arm)
$\mathrm{AB}=\mathrm{AC}$ (Since ABC is an isosceles triangle)
$\mathrm{BD}=\mathrm{CD}($ Since BCD is an isosceles triangle)
So, $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$.
$\therefore \angle \mathrm{ABD}=\angle \mathrm{ACD}$ by CPCT .
6. $\triangle \mathrm{ABC}$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$. Side BA is produced to D such that $\mathrm{AD}=\mathrm{AB}$ (see Fig. 7.34). Show that $\angle B C D$ is a right angle.

Fig. 7.34

Solution:

It is given that $A B=A C$ and $A D=A B$
We will have to now prove $\angle \mathrm{BCD}$ is a right angle.

Proof:

Consider $\triangle \mathrm{ABC}$,
$\mathrm{AB}=\mathrm{AC}$ (It is given in the question)
Also, $\angle \mathrm{ACB}=\angle \mathrm{ABC}$ (They are angles opposite to the equal sides and so, they are equal)
Now, consider $\triangle \mathrm{ACD}$,
$\mathrm{AD}=\mathrm{AB}$
Also, $\angle \mathrm{ADC}=\angle \mathrm{ACD}$ (They are angles opposite to the equal sides and so, they are equal)
Now,
In $\triangle \mathrm{ABC}$,
$\angle \mathrm{CAB}+\angle \mathrm{ACB}+\angle \mathrm{ABC}=180^{\circ}$
So, $\angle \mathrm{CAB}+2 \angle \mathrm{ACB}=180^{\circ}$
$\Rightarrow \angle \mathrm{CAB}=180^{\circ}-2 \angle \mathrm{ACB}-$ (i)
Similarly, in $\triangle \mathrm{ADC}$,
$\angle \mathrm{CAD}=180^{\circ}-2 \angle \mathrm{ACD}-$ (ii)
also,
$\angle \mathrm{CAB}+\angle \mathrm{CAD}=180^{\circ}(\mathrm{BD}$ is a straight line. $)$
Adding (i) and (ii) we get,
$\angle \mathrm{CAB}+\angle \mathrm{CAD}=180^{\circ}-2 \angle \mathrm{ACB}+180^{\circ}-2 \angle \mathrm{ACD}$
$\Rightarrow 180^{\circ}=360^{\circ}-2 \angle A C B-2 \angle A C D$
$\Rightarrow 2(\angle \mathrm{ACB}+\angle \mathrm{ACD})=180^{\circ}$
$\Rightarrow \angle \mathrm{BCD}=90^{\circ}$
7. ABC is a right-angled triangle in which $\angle A=90^{\circ}$ and $A B=A C$. Find $\angle B$ and $\angle C$.

Solution:

In the question, it is given that
$\angle \mathrm{A}=90^{\circ}$ and $\mathrm{AB}=\mathrm{AC}$
$\mathrm{AB}=\mathrm{AC}$
$\Rightarrow \angle \mathrm{B}=\angle \mathrm{C}$ (They are angles opposite to the equal sides and so, they are equal)
Now,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ (Since the sum of the interior angles of the triangle)
$\therefore 90^{\circ}+2 \angle \mathrm{~B}=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{~B}=90^{\circ}$
$\Rightarrow \angle \mathrm{B}=45^{\circ}$
So, $\angle \mathrm{B}=\angle \mathrm{C}=45^{\circ}$
8. Show that the angles of an equilateral triangle are 60° each.

Solution:

Let ABC be an equilateral triangle as shown below:

Here, $\mathrm{BC}=\mathrm{AC}=\mathrm{AB}$ (Since the length of all sides is same)
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}$ (Sides opposite to the equal angles are equal.)
Also, we know that
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 3 \angle \mathrm{~A}=180^{\circ}$
$\Rightarrow \angle \mathrm{A}=60^{\circ}$
$\therefore \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$
So, the angles of an equilateral triangle are always 60° each.

