EXERCISE: 7.3

1. $\triangle A B C$ and $\triangle D B C$ are two isosceles triangles on the same base $B C$ and vertices A and D are on the same side of BC (see Fig. 7.39). If AD is extended to intersect BC at \mathbf{P}, show that
(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
(ii) $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$
(iii) AP bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$.
(iv) AP is the perpendicular bisector of BC .

Fig. 7.39

Solution:

In the above question, it is given that $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are two isosceles triangles.
(i) $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$ are similar by SSS congruency because:
$\mathrm{AD}=\mathrm{AD}$ (It is the common arm)
$\mathrm{AB}=\mathrm{AC}($ Since $\triangle \mathrm{ABC}$ is isosceles $)$
$\mathrm{BD}=\mathrm{CD}$ (Since $\triangle \mathrm{DBC}$ is isosceles)
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$.
(ii) $\triangle \mathrm{ABP}$ and $\triangle \mathrm{ACP}$ are similar as:
$\mathrm{AP}=\mathrm{AP}$ (It is the common side)
$\angle \mathrm{PAB}=\angle \mathrm{PAC}($ by CPCT since $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD})$
$\mathrm{AB}=\mathrm{AC}($ Since $\triangle \mathrm{ABC}$ is isosceles)
So, $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$ by SAS congruency condition.
(iii) $\angle \mathrm{PAB}=\angle \mathrm{PAC}$ by CPCT as $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$.

AP bisects $\angle \mathrm{A}$. - (i)
Also, $\triangle \mathrm{BPD}$ and $\triangle \mathrm{CPD}$ are similar by SSS congruency as
$\mathrm{PD}=\mathrm{PD}$ (It is the common side)
$B D=C D($ Since $\triangle D B C$ is isosceles.)
$\mathrm{BP}=\mathrm{CP}($ by CPCT as $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP})$
So, $\triangle \mathrm{BPD} \cong \triangle \mathrm{CPD}$.
Thus, $\angle \mathrm{BDP}=\angle \mathrm{CDP}$ by CPCT. - (ii)
Now by comparing (i) and (ii) it can be said that AP bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$.
(iv) $\angle \mathrm{BPD}=\angle \mathrm{CPD}($ by CPCT as $\triangle \mathrm{BPD} \triangle \mathrm{CPD})$
and $\mathrm{BP}=\mathrm{CP}-$ (i)
also,
$\angle \mathrm{BPD}+\angle \mathrm{CPD}=180^{\circ}$ (Since BC is a straight line.)
$\Rightarrow 2 \angle \mathrm{BPD}=180^{\circ}$
$\Rightarrow \angle \mathrm{BPD}=90^{\circ}$-(ii)
Now, from equations (i) and (ii), it can be said that
AP is the perpendicular bisector of BC .
2. AD is an altitude of an isosceles triangle ABC in which $\mathrm{AB}=\mathrm{AC}$. Show that
(i) AD bisects BC (ii) AD bisects $\angle \mathrm{A}$.

Solution:

It is given that AD is an altitude and $\mathrm{AB}=\mathrm{AC}$. The diagram is as follows:

(i) In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$,
$\angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}$
$\mathrm{AB}=\mathrm{AC}$ (It is given in the question)
$\mathrm{AD}=\mathrm{AD}$ (Common arm)
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$ by RHS congruence condition.
Now, by the rule of CPCT,
$B D=C D$.
So, AD bisects BC
(ii) Again, by the rule of $\mathrm{CPCT}, \angle \mathrm{BAD}=\angle \mathrm{CAD}$

Hence, AD bisects $\angle \mathrm{A}$.
3. Two sides $A B$ and $B C$ and median $A M$ of one triangle $A B C$ are respectively equal to sides $P Q$ and $Q R$ and median PN of $\triangle P Q R$ (see Fig. 7.40). Show that:
(i) $\triangle \mathrm{ABM} \cong \triangle \mathrm{PQN}$
(ii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$

Fig. 7.40

Solution:

Given parameters are:
$A B=P Q$,
$\mathrm{BC}=\mathrm{QR}$ and
$\mathrm{AM}=\mathrm{PN}$
(i) $1 / 2 \mathrm{BC}=\mathrm{BM}$ and $1 / 2 \mathrm{QR}=\mathrm{QN}$ (Since AM and PN are medians)

Also, $\mathrm{BC}=\mathrm{QR}$
So, $1 / 2 \mathrm{BC}=1 / 2 \mathrm{QR}$
$\Rightarrow \mathrm{BM}=\mathrm{QN}$
In $\triangle \mathrm{ABM}$ and $\triangle \mathrm{PQN}$,
$\mathrm{AM}=\mathrm{PN}$ and $\mathrm{AB}=\mathrm{PQ}$ (As given in the question)
$\mathrm{BM}=\mathrm{QN}$ (Already proved)
$\therefore \triangle \mathrm{ABM} \cong \triangle \mathrm{PQN}$ by SSS congruency.
(ii) In $\triangle A B C$ and $\triangle P Q R$,
$\mathrm{AB}=\mathrm{PQ}$ and $\mathrm{BC}=\mathrm{QR}$ (As given in the question)
$\angle \mathrm{ABC}=\angle \mathrm{PQR}$ (by CPCT)
So, $\Delta \mathrm{ABC} \cong \triangle \mathrm{PQR}$ by SAS congruency.
4. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

Solution:

It is known that BE and CF are two equal altitudes.
Now, in $\triangle \mathrm{BEC}$ and $\triangle \mathrm{CFB}$,
$\angle \mathrm{BEC}=\angle \mathrm{CFB}=90^{\circ}$ (Same Altitudes)
$\mathrm{BC}=\mathrm{CB}($ Common side $)$
$\mathrm{BE}=\mathrm{CF}($ Common side $)$
So, $\triangle \mathrm{BEC} \cong \triangle \mathrm{CFB}$ by RHS congruence criterion.
Also, $\angle \mathrm{C}=\angle \mathrm{B}$ (by CPCT)
Therefore, $\mathrm{AB}=\mathrm{AC}$ as sides opposite to the equal angles is always equal.
5. ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$. Draw $\mathrm{AP} \perp \mathrm{BC}$ to show that $\angle \mathrm{B}=\angle \mathrm{C}$.

Solution:

In the question, it is given that $\mathrm{AB}=\mathrm{AC}$
Now, $\triangle \mathrm{ABP}$ and $\triangle \mathrm{ACP}$ are similar by RHS congruency as
$\angle \mathrm{APB}=\angle \mathrm{APC}=90^{\circ}(\mathrm{AP}$ is altitude $)$
$\mathrm{AB}=\mathrm{AC}$ (Given in the question)
$\mathrm{AP}=\mathrm{AP}($ Common side $)$
So, $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$.
$\therefore \angle \mathrm{B}=\angle \mathrm{C}$ (by CPCT)

