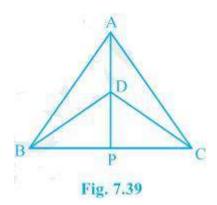


EXERCISE: 7.3

(PAGE NO: 128)

1. $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Fig. 7.39). If AD is extended to intersect BC at P, show that

- (i) $\triangle ABD \cong \triangle ACD$
- (ii) $\triangle ABP \cong \triangle ACP$
- (iii) AP bisects ∠A as well as ∠D.
- (iv) AP is the perpendicular bisector of BC.



Solution:

In the above question, it is given that $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles.

(i) \triangle ABD and \triangle ACD are similar by SSS congruency because:

AD = AD (It is the common arm)

AB = AC (Since $\triangle ABC$ is isosceles)

BD = CD (Since \triangle DBC is isosceles)

 $\therefore \triangle ABD \cong \triangle ACD.$

(ii) \triangle ABP and \triangle ACP are similar as:

AP = AP (It is the common side)

 $\angle PAB = \angle PAC$ (by CPCT since $\triangle ABD \cong \triangle ACD$)

AB = AC (Since $\triangle ABC$ is isosceles)

So, $\triangle ABP \cong \triangle ACP$ by SAS congruency condition.

(iii) $\angle PAB = \angle PAC$ by CPCT as $\triangle ABD \cong \triangle ACD$.

AP bisects ∠A. — (i)

Also, \triangle BPD and \triangle CPD are similar by SSS congruency as

PD = PD (It is the common side)

BD = CD (Since \triangle DBC is isosceles.)

BP = CP (by CPCT as \triangle ABP \cong \triangle ACP)

So, $\triangle BPD \cong \triangle CPD$.

Thus, $\angle BDP = \angle CDP$ by CPCT. — (ii)

Now by comparing (i) and (ii) it can be said that AP bisects $\angle A$ as well as $\angle D$.

(iv) $\angle BPD = \angle CPD$ (by CPCT as $\triangle BPD$ $\triangle CPD$)

and BP = CP - (i)

also,

 $\angle BPD + \angle CPD = 180^{\circ}$ (Since BC is a straight line.)

 $\Rightarrow 2 \angle BPD = 180^{\circ}$

 $\Rightarrow \angle BPD = 90^{\circ}$ —(ii)

Now, from equations (i) and (ii), it can be said that

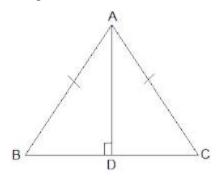
AP is the perpendicular bisector of BC.

2. AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that

(i) AD bisects BC (ii) AD bisects ∠A.

Solution:

It is given that AD is an altitude and AB = AC. The diagram is as follows:



(i) In \triangle ABD and \triangle ACD,

 $\angle ADB = \angle ADC = 90^{\circ}$

AB = AC (It is given in the question)

AD = AD (Common arm)

 $\therefore \triangle ABD \cong \triangle ACD$ by RHS congruence condition.

Now, by the rule of CPCT,

BD = CD.

So, AD bisects BC

(ii) Again, by the rule of CPCT, $\angle BAD = \angle CAD$

Hence, AD bisects ∠A.

- 3. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of Δ PQR (see Fig. 7.40). Show that:
- (i) $\triangle ABM \cong \triangle PQN$
- (ii) $\triangle ABC \cong \triangle PQR$

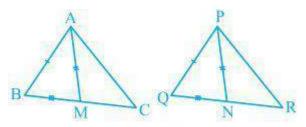


Fig. 7.40

Solution:

Given parameters are:

AB = PQ,

BC = QR and

AM = PN

(i) $\frac{1}{2}$ BC = BM and $\frac{1}{2}$ QR = QN (Since AM and PN are medians)

Also, BC = QR

So, $\frac{1}{2}$ BC = $\frac{1}{2}$ QR

 \Rightarrow BM = QN

In $\triangle ABM$ and $\triangle PQN$,

AM = PN and AB = PQ (As given in the question)

BM = QN (Already proved)

 $\therefore \triangle ABM \cong \triangle PQN$ by SSS congruency.

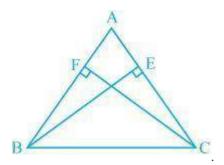
(ii) In \triangle ABC and \triangle PQR,

AB = PQ and BC = QR (As given in the question)

 $\angle ABC = \angle PQR$ (by CPCT)

So, $\triangle ABC \cong \triangle PQR$ by SAS congruency.

4. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.



Solution:

It is known that BE and CF are two equal altitudes.

Now, in \triangle BEC and \triangle CFB,

 $\angle BEC = \angle CFB = 90^{\circ}$ (Same Altitudes)

BC = CB (Common side)

BE = CF (Common side)

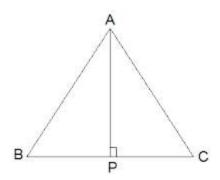
So, $\triangle BEC \cong \triangle CFB$ by RHS congruence criterion.

Also, $\angle C = \angle B$ (by CPCT)

Therefore, AB = AC as sides opposite to the equal angles is always equal.

5. ABC is an isosceles triangle with AB = AC. Draw AP \perp BC to show that \angle B = \angle C.

Solution:



In the question, it is given that AB = AC

Now, \triangle ABP and \triangle ACP are similar by RHS congruency as

 $\angle APB = \angle APC = 90^{\circ}$ (AP is altitude)

AB = AC (Given in the question)

AP = AP (Common side)

So, $\triangle ABP \cong \triangle ACP$.

 $\therefore \angle B = \angle C$ (by CPCT)