EXERCISE: 7.4

1. Show that in a right-angled triangle, the hypotenuse is the longest side.

Solution:

It is known that $A B C$ is a triangle right angled at B.
We know that,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
Now, if $\angle B+\angle C=90^{\circ}$ then $\angle A$ has to be 90°.
Since A is the largest angle of the triangle, the side opposite to it must be the largest.
So, AB is the hypotenuse which will be the largest side of the above right-angled triangle i.e. $\triangle \mathrm{ABC}$.
2. In Fig. 7.48, sides AB and AC of $\triangle \mathrm{ABC}$ are extended to points P and Q respectively. Also, $\angle \mathrm{PBC}<\angle \mathrm{QCB}$. Show that AC $>\mathrm{AB}$.

Fig. 7.48

Solution:

It is given that $\angle \mathrm{PBC}<\angle \mathrm{QCB}$
We know that $\angle \mathrm{ABC}+\angle \mathrm{PBC}=180^{\circ}$
So, $\angle \mathrm{ABC}=180^{\circ}-\angle \mathrm{PBC}$
Also,
$\angle \mathrm{ACB}+\angle \mathrm{QCB}=180^{\circ}$
Therefore $\angle \mathrm{ACB}=180^{\circ}-\angle \mathrm{QCB}$
Now, since $\angle \mathrm{PBC}<\angle \mathrm{QCB}$,
$\therefore \angle \mathrm{ABC}>\angle \mathrm{ACB}$
Hence, $\mathrm{AC}>\mathrm{AB}$ as sides opposite to the larger angle is always larger.
3. In Fig. 7.49, $\angle \mathrm{B}<\angle \mathrm{A}$ and $\angle \mathrm{C}<\angle \mathrm{D}$. Show that $\mathrm{AD}<\mathrm{BC}$.

Fig. 7.49

Solution:

In the question, it is mentioned that angles B and angle C is smaller than angles A and D respectively i.e. $\angle \mathrm{B}<\angle \mathrm{A}$ and $\angle \mathrm{C}<\angle \mathrm{D}$.

Now,
Since the side opposite to the smaller angle is always smaller
$\mathrm{AO}<\mathrm{BO}-$ (i)
And OD < OC - (ii)
By adding equation (i) and equation (ii) we get
$\mathrm{AO}+\mathrm{OD}<\mathrm{BO}+\mathrm{OC}$
So, $\mathrm{AD}<\mathrm{BC}$
4. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see Fig. 7.50).

Show that $\angle A>\angle C$ and $\angle B>\angle D$.

Fig. 7.50

Solution:

In $\triangle \mathrm{ABD}$, we see that
$\mathrm{AB}<\mathrm{AD}<\mathrm{BD}$
So, $\angle \mathrm{ADB}<\angle \mathrm{ABD}$ - (i) (Since angle opposite to longer side is always larger)
Now, in $\triangle B C D$,
$\mathrm{BC}<\mathrm{DC}<\mathrm{BD}$
Hence, it can be concluded that
$\angle \mathrm{BDC}<\angle \mathrm{CBD}$ - (ii)
Now, by adding equation (i) and equation (ii) we get,
$\angle \mathrm{ADB}+\angle \mathrm{BDC}<\angle \mathrm{ABD}+\angle \mathrm{CBD}$
$\angle \mathrm{ADC}<\angle \mathrm{ABC}$
$\angle B>\angle D$
Similarly, In triangle ABC ,
$\angle A C B<\angle B A C$ - (iii) (Since the angle opposite to the longer side is always larger)
Now, In $\triangle \mathrm{ADC}$,
$\angle \mathrm{DCA}<\angle \mathrm{DAC}$ - (iv)
By adding equation (iii) and equation (iv) we get,
$\angle \mathrm{ACB}+\angle \mathrm{DCA}<\angle \mathrm{BAC}+\angle \mathrm{DAC}$
$\Rightarrow \angle \mathrm{BCD}<\angle \mathrm{BAD}$
$\therefore \angle \mathrm{A}>\angle \mathrm{C}$
5. In Fig 7.51, $\mathrm{PR}>\mathrm{PQ}$ and PS bisect $\angle \mathrm{QPR}$. Prove that $\angle \mathrm{PSR}>\angle \mathrm{PSQ}$.

Fig. 7.51

Solution:

It is given that $\mathrm{PR}>\mathrm{PQ}$ and PS bisects $\angle \mathrm{QPR}$
Now we will have to prove that angle PSR is smaller than PSQ i.e. $\angle \mathrm{PSR}>\angle \mathrm{PSQ}$
Proof:
$\angle \mathrm{QPS}=\angle \mathrm{RPS}-$ (ii) (As PS bisects $\angle \mathrm{QPR})$
$\angle \mathrm{PQR}>\angle \mathrm{PRQ}-$ (i) $($ Since $\mathrm{PR}>\mathrm{PQ}$ as angle opposite to the larger side is always larger)
$\angle \mathrm{PSR}=\angle \mathrm{PQR}+\angle \mathrm{QPS}-$ (iii) (Since the exterior angle of a triangle equals to the sum of opposite interior angles)
$\angle \mathrm{PSQ}=\angle \mathrm{PRQ}+\angle \mathrm{RPS}-$ (iv) (As the exterior angle of a triangle equals to the sum of opposite interior angles)
By adding (i) and (ii)
$\angle \mathrm{PQR}+\angle \mathrm{QPS}>\angle \mathrm{PRQ}+\angle \mathrm{RPS}$
Thus, from (i), (ii), (iii) and (iv), we get
$\angle \mathrm{PSR}>\angle \mathrm{PSQ}$
6. Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Solution:

First, let " l " be a line segment and " B " be a point lying on it. A line AB perpendicular to l is now drawn. Also, let C be any other point on l. The diagram will be as follows:

To prove:
$\mathrm{AB}<\mathrm{AC}$
Proof:
In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$
Now, we know that
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\therefore \angle \mathrm{A}+\angle \mathrm{C}=90^{\circ}$
Hence, $\angle \mathrm{C}$ must be an acute angle which implies $\angle \mathrm{C}<\angle \mathrm{B}$
So, $\mathrm{AB}<\mathrm{AC}$ (As the side opposite to the larger angle is always larger)

