1. In quadrilateral $\mathrm{ACBD}, \mathrm{AC}=\mathrm{AD}$ and AB bisect $\angle \mathrm{A}$ (see Fig. 7.16). Show that $\triangle \mathrm{ABC} \cong \triangle \mathrm{ABD}$. What can you say about BC and BD?

Fig. 7.16

Solution:

It is given that AC and AD are equal i.e. $\mathrm{AC}=\mathrm{AD}$ and the line segment AB bisects $\angle \mathrm{A}$.
We will have to now prove that the two triangles $A B C$ and $A B D$ are similar i.e. $\mathbf{\Delta A B C} \cong \Delta \mathbf{A B D}$
Proof:
Consider the triangles $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ABD}$,
(i) $\mathrm{AC}=\mathrm{AD}$ (It is given in the question)
(ii) $\mathrm{AB}=\mathrm{AB}$ (Common)
(iii) $\angle \mathrm{CAB}=\angle \mathrm{DAB}$ (Since AB is the bisector of angle A)

So, by SAS congruency criterion, $\triangle \mathrm{ABC} \cong \triangle \mathrm{ABD}$.
For the $2^{\text {nd }}$ part of the question, BC and BD are of equal lengths by the rule of C.P.C.T.
2. ABCD is a quadrilateral in which $\mathrm{AD}=\mathrm{BC}$ and $\angle \mathrm{DAB}=\angle \mathrm{CBA}$ (see Fig. 7.17). Prove that
(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$
(ii) $\mathrm{BD}=\mathrm{AC}$
(iii) $\angle \mathrm{ABD}=\angle \mathrm{BAC}$.

Fig. 7.17

Solution:

The given parameters from the questions are $\angle D A B=\angle C B A$ and $A D=B C$.
(i) $\triangle \mathrm{ABD}$ and $\triangle \mathrm{BAC}$ are similar by SAS congruency as
$\mathrm{AB}=\mathrm{BA}(\mathrm{It}$ is the common arm)
$\angle \mathrm{DAB}=\angle \mathrm{CBA}$ and $\mathrm{AD}=\mathrm{BC}$ (These are given in the question)
So, triangles $A B D$ and $B A C$ are similar i.e. $\triangle A B D \cong \triangle B A C$. (Hence proved).
(ii) It is now known that $\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$ so,
$\mathrm{BD}=\mathrm{AC}($ by the rule of CPCT$)$.
(iii) Since $\triangle A B D \cong \triangle B A C$ so,

Angles $\angle \mathrm{ABD}=\angle \mathrm{BAC}$ (by the rule of CPCT).
3. $A D$ and $B C$ are equal perpendiculars to a line segment $A B$ (see Fig. 7.18). Show that CD bisects $A B$.

Fig. 7.18

Solution:

It is given that AD and BC are two equal perpendiculars to AB .
We will have to prove that $\mathbf{C D}$ is the bisector of $\mathbf{A B}$
Now,
Triangles $\triangle \mathrm{AOD}$ and $\triangle \mathrm{BOC}$ are similar by AAS congruency since:
(i) $\angle \mathrm{A}=\angle \mathrm{B}$ (They are perpendiculars)
(ii) $\mathrm{AD}=\mathrm{BC}$ (As given in the question)
(iii) $\angle \mathrm{AOD}=\angle \mathrm{BOC}$ (They are vertically opposite angles)
$\therefore \triangle \mathrm{AOD} \cong \triangle \mathrm{BOC}$.
So, $\mathrm{AO}=\mathrm{OB}$ (by the rule of CPCT).
Thus, CD bisects AB (Hence proved).
4. l and m are two parallel lines intersected by another pair of parallel lines p and q (see Fig. 7.19). Show that $\Delta \mathrm{ABC} \cong \Delta \mathrm{CDA}$.

Fig. 7.19

Solution:

It is given that $\mathrm{p} \| \mathrm{q}$ and $1 \| \mathrm{m}$
To prove:
Triangles ABC and CDA are similar i.e. $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$
Proof:
Consider the $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDA}$,
(i) $\angle \mathrm{BCA}=\angle \mathrm{DAC}$ and $\angle \mathrm{BAC}=\angle \mathrm{DCA}$ Since they are alternate interior angles
(ii) $\mathrm{AC}=\mathrm{CA}$ as it is the common arm

So, by ASA congruency criterion, $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$.
5. Line l is the bisector of an angle $\angle A$ and B is any point on l. $B P$ and $B Q$ are perpendiculars from B to the arms of $\angle A$ (see Fig. 7.20). Show that:
(i) $\triangle \mathrm{APB} \cong \triangle \mathrm{AQB}$
(ii) $\mathrm{BP}=\mathrm{BQ}$ or B is equidistant from the arms of $\angle \mathrm{A}$.

Fig. 7.20

Solution:

It is given that the line " l " is the bisector of angle $\angle \mathrm{A}$ and the line segments BP and BQ are perpendiculars drawn from l.
(i) $\triangle \mathrm{APB}$ and $\triangle \mathrm{AQB}$ are similar by AAS congruency because:
$\angle \mathrm{P}=\angle \mathrm{Q}$ (They are the two right angles)
$\mathrm{AB}=\mathrm{AB}$ (It is the common arm)
$\angle \mathrm{BAP}=\angle \mathrm{BAQ}$ (As line l is the bisector of angle A)
So, $\triangle \mathrm{APB} \cong \triangle \mathrm{AQB}$.
(ii) By the rule of $\mathrm{CPCT}, \mathrm{BP}=\mathrm{BQ}$. So, it can be said the point B is equidistant from the arms of $\angle \mathrm{A}$.
6. In Fig. 7.21, $\mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD}$ and $\angle \mathrm{BAD}=\angle \mathrm{EAC}$. Show that $\mathrm{BC}=\mathrm{DE}$.

Fig. 7.21

Solution:

It is given in the question that $\mathrm{AB}=\mathrm{AD}, \mathrm{AC}=\mathrm{AE}$, and $\angle \mathrm{BAD}=\angle \mathrm{EAC}$

To prove:

The line segment BC and DE are similar i.e. $\mathrm{BC}=\mathrm{DE}$

Proof:

We know that $\angle \mathrm{BAD}=\angle \mathrm{EAC}$
Now, by adding $\angle \mathrm{DAC}$ on both sides we get,
$\angle \mathrm{BAD}+\angle \mathrm{DAC}=\angle \mathrm{EAC}+\angle \mathrm{DAC}$
This implies, $\angle \mathrm{BAC}=\angle \mathrm{EAD}$
Now, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADE}$ are similar by SAS congruency since:
(i) $\mathrm{AC}=\mathrm{AE}$ (As given in the question)
(ii) $\angle \mathrm{BAC}=\angle \mathrm{EAD}$
(iii) $\mathrm{AB}=\mathrm{AD}$ (It is also given in the question)
\therefore Triangles ABC and ADE are similar i.e. $\triangle \mathrm{ABC} \cong \triangle \mathrm{ADE}$.
So, by the rule of CPCT, it can be said that $\mathrm{BC}=\mathrm{DE}$.
7. $A B$ is a line segment and P is its mid-point. D and E are points on the same side of $A B$ such that $\angle B A D=$ $\angle \mathrm{ABE}$ and $\angle \mathrm{EPA}=\angle \mathrm{DPB}$ (see Fig. 7.22). Show that
(i) $\triangle \mathrm{DAP} \cong \triangle E B P$
(ii) $\mathrm{AD}=\mathrm{BE}$

Fig. 7.22

Solutions:

In the question, it is given that P is the mid-point of line segment AB . Also, $\angle \mathrm{BAD}=\angle \mathrm{ABE}$ and $\angle \mathrm{EPA}=\angle \mathrm{DPB}$
(i) It is given that $\angle \mathrm{EPA}=\angle \mathrm{DPB}$

Now, add $\angle \mathrm{DPE}$ on both sides,
$\angle \mathrm{EPA}+\angle \mathrm{DPE}=\angle \mathrm{DPB}+\angle \mathrm{DPE}$
This implies that angles DPA and EPB are equal i.e. $\angle \mathrm{DPA}=\angle \mathrm{EPB}$
Now, consider the triangles DAP and EBP.
$\angle \mathrm{DPA}=\angle \mathrm{EPB}$
$\mathrm{AP}=\mathrm{BP}($ Since P is the mid-point of the line segment AB$)$
$\angle \mathrm{BAD}=\angle \mathrm{ABE}$ (As given in the question)
So, by ASA congruency, $\triangle \mathrm{DAP} \cong \triangle \mathrm{EBP}$.
(ii) By the rule of $\mathrm{CPCT}, \mathrm{AD}=\mathrm{BE}$.
8. In right triangle $A B C$, right angled at C, M is the mid-point of hypotenuse $A B$. C is joined to M and produced to a point D such that $D M=C M$. Point D is joined to point B (see Fig. 7.23). Show that:
(i) $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$
(ii) $\angle \mathrm{DBC}$ is a right angle.
(iii) $\triangle \mathrm{DBC} \cong \triangle \mathrm{ACB}$
(iv) $\mathrm{CM}=1 / 2 \mathrm{AB}$

Fig. 7.23

Solution:

It is given that M is the mid-point of the line segment $\mathrm{AB}, \angle \mathrm{C}=90^{\circ}$, and $\mathrm{DM}=\mathrm{CM}$
(i) Consider the triangles $\triangle \mathrm{AMC}$ and $\triangle \mathrm{BMD}$:
$\mathrm{AM}=\mathrm{BM}$ (Since M is the mid-point)
$\mathrm{CM}=\mathrm{DM}$ (Given in the question)
$\angle \mathrm{CMA}=\angle \mathrm{DMB}$ (They are vertically opposite angles)
So, by SAS congruency criterion, $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$.
(ii) $\angle \mathrm{ACM}=\angle \mathrm{BDM}$ (by CPCT)
$\therefore \mathrm{AC} \| \mathrm{BD}$ as alternate interior angles are equal.
Now, $\angle \mathrm{ACB}+\angle \mathrm{DBC}=180^{\circ}$ (Since they are co-interiors angles)
$\Rightarrow 90^{\circ}+\angle \mathrm{B}=180^{\circ}$
$\therefore \angle \mathrm{DBC}=90^{\circ}$
(iii) In $\triangle \mathrm{DBC}$ and $\triangle \mathrm{ACB}$,
$\mathrm{BC}=\mathrm{CB}$ (Common side)
$\angle \mathrm{ACB}=\angle \mathrm{DBC}$ (They are right angles)
$\mathrm{DB}=\mathrm{AC}($ by CPCT $)$
So, $\triangle \mathrm{DBC} \cong \triangle \mathrm{ACB}$ by SAS congruency.
(iv) $\mathrm{DC}=\mathrm{AB}$ (Since $\triangle \mathrm{DBC} \cong \triangle \mathrm{ACB}$)
$\Rightarrow \mathrm{DM}=\mathrm{CM}=\mathrm{AM}=\mathrm{BM}$ (Since M the is mid-point)
So, $D M+C M=B M+A M$
Hence, $\mathrm{CM}+\mathrm{CM}=\mathrm{AB}$
$\Rightarrow \mathrm{CM}=(1 / 2) \mathrm{AB}$

EXERCISE: 7.2

1. In an isosceles triangle $A B C$, with $A B=A C$, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that:
(i) $\mathrm{OB}=\mathrm{OC}$ (ii) AO bisects $\angle \mathrm{A}$

Solution:

Given:
$\mathrm{AB}=\mathrm{AC}$ and
the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ intersect each other at O
(i) Since $A B C$ is an isosceles with $A B=A C$,
$\angle \mathrm{B}=\angle \mathrm{C}$
$1 / 2 \angle \mathrm{~B}=1 / 2 \angle \mathrm{C}$
$\Rightarrow \angle \mathrm{OBC}=\angle \mathrm{OCB}$ (Angle bisectors)
$\therefore \mathrm{OB}=\mathrm{OC}$ (Side opposite to the equal angles are equal.)
(ii) In $\triangle A O B$ and $\triangle A O C$,
$\mathrm{AB}=\mathrm{AC}$ (Given in the question)
$\mathrm{AO}=\mathrm{AO}$ (Common arm)
$\mathrm{OB}=\mathrm{OC}$ (As Proved Already)
So, $\triangle \mathrm{AOB} \cong \triangle \mathrm{AOC}$ by SSS congruence condition.
$\mathrm{BAO}=\mathrm{CAO}($ by CPCT $)$
Thus, AO bisects $\angle \mathrm{A}$.
2. In $\triangle \mathrm{ABC}, \mathrm{AD}$ is the perpendicular bisector of BC (see Fig. 7.30). Show that $\triangle \mathrm{ABC}$ is an isosceles triangle in which $A B=A C$.

Fig. 7.30

Solution:

It is given that $A D$ is the perpendicular bisector of $B C$
To prove:
$\mathrm{AB}=\mathrm{AC}$

Proof:

In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ADC}$,
$\mathrm{AD}=\mathrm{AD}$ (It is the Common arm)
$\angle \mathrm{ADB}=\angle \mathrm{ADC}$
$\mathrm{BD}=\mathrm{CD}$ (Since AD is the perpendicular bisector)
So, $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$ by SAS congruency criterion.
Thus,
$\mathrm{AB}=\mathrm{AC}($ by CPCT $)$
3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see Fig. 7.31). Show that these altitudes are equal.

Fig. 7.31

Solution:

Given:
(i) BE and CF are altitudes.
(ii) $\mathrm{AC}=\mathrm{AB}$

To prove:
$\mathrm{BE}=\mathrm{CF}$

Proof:

Triangles $\triangle \mathrm{AEB}$ and $\triangle \mathrm{AFC}$ are similar by AAS congruency since
$\angle \mathrm{A}=\angle \mathrm{A}$ (It is the common arm)
$\angle \mathrm{AEB}=\angle \mathrm{AFC}$ (They are right angles)
$\mathrm{AB}=\mathrm{AC}$ (Given in the question)
$\therefore \triangle \mathrm{AEB} \cong \triangle \mathrm{AFC}$ and so, $\mathrm{BE}=\mathrm{CF}($ by CPCT$)$.
4. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Fig. 7.32). Show that
(i) $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$
(ii) $\mathrm{AB}=\mathrm{AC}$, i.e., ABC is an isosceles triangle.

Fig. 7.32

Solution:

It is given that $\mathrm{BE}=\mathrm{CF}$
(i) In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{ACF}$,
$\angle \mathrm{A}=\angle \mathrm{A}$ (It is the common angle)
$\angle \mathrm{AEB}=\angle \mathrm{AFC}$ (They are right angles)
$\mathrm{BE}=\mathrm{CF}$ (Given in the question)
$\therefore \triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$ by AAS congruency condition.
(ii) $\mathrm{AB}=\mathrm{AC}$ by CPCT and so, ABC is an isosceles triangle.
5. ABC and DBC are two isosceles triangles on the same base BC (see Fig. 7.33). Show that $\angle A B D=\angle A C D$.

Fig. 7.33

Solution:

In the question, it is given that ABC and DBC are two isosceles triangles.
We will have to show that $\angle \mathrm{ABD}=\angle \mathrm{ACD}$
Proof:
Triangles $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$ are similar by SSS congruency since
$\mathrm{AD}=\mathrm{AD}$ (It is the common arm)
$\mathrm{AB}=\mathrm{AC}$ (Since ABC is an isosceles triangle)
$\mathrm{BD}=\mathrm{CD}($ Since BCD is an isosceles triangle)
So, $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$.
$\therefore \angle \mathrm{ABD}=\angle \mathrm{ACD}$ by CPCT .
6. $\triangle \mathrm{ABC}$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$. Side BA is produced to D such that $\mathrm{AD}=\mathrm{AB}$ (see Fig. 7.34). Show that $\angle B C D$ is a right angle.

Fig. 7.34

Solution:

It is given that $A B=A C$ and $A D=A B$
We will have to now prove $\angle \mathrm{BCD}$ is a right angle.

Proof:

Consider $\triangle \mathrm{ABC}$,
$\mathrm{AB}=\mathrm{AC}$ (It is given in the question)
Also, $\angle \mathrm{ACB}=\angle \mathrm{ABC}$ (They are angles opposite to the equal sides and so, they are equal)
Now, consider $\triangle \mathrm{ACD}$,
$\mathrm{AD}=\mathrm{AB}$
Also, $\angle \mathrm{ADC}=\angle \mathrm{ACD}$ (They are angles opposite to the equal sides and so, they are equal)
Now,
In $\triangle \mathrm{ABC}$,
$\angle \mathrm{CAB}+\angle \mathrm{ACB}+\angle \mathrm{ABC}=180^{\circ}$
So, $\angle \mathrm{CAB}+2 \angle \mathrm{ACB}=180^{\circ}$
$\Rightarrow \angle \mathrm{CAB}=180^{\circ}-2 \angle \mathrm{ACB}-$ (i)
Similarly, in $\triangle \mathrm{ADC}$,
$\angle \mathrm{CAD}=180^{\circ}-2 \angle \mathrm{ACD}-$ (ii)
also,
$\angle \mathrm{CAB}+\angle \mathrm{CAD}=180^{\circ}(\mathrm{BD}$ is a straight line. $)$
Adding (i) and (ii) we get,
$\angle \mathrm{CAB}+\angle \mathrm{CAD}=180^{\circ}-2 \angle \mathrm{ACB}+180^{\circ}-2 \angle \mathrm{ACD}$
$\Rightarrow 180^{\circ}=360^{\circ}-2 \angle A C B-2 \angle A C D$
$\Rightarrow 2(\angle \mathrm{ACB}+\angle \mathrm{ACD})=180^{\circ}$
$\Rightarrow \angle \mathrm{BCD}=90^{\circ}$
7. ABC is a right-angled triangle in which $\angle A=90^{\circ}$ and $A B=A C$. Find $\angle B$ and $\angle C$.

Solution:

In the question, it is given that
$\angle \mathrm{A}=90^{\circ}$ and $\mathrm{AB}=\mathrm{AC}$
$\mathrm{AB}=\mathrm{AC}$
$\Rightarrow \angle \mathrm{B}=\angle \mathrm{C}$ (They are angles opposite to the equal sides and so, they are equal)
Now,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ (Since the sum of the interior angles of the triangle)
$\therefore 90^{\circ}+2 \angle \mathrm{~B}=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{~B}=90^{\circ}$
$\Rightarrow \angle \mathrm{B}=45^{\circ}$
So, $\angle \mathrm{B}=\angle \mathrm{C}=45^{\circ}$
8. Show that the angles of an equilateral triangle are 60° each.

Solution:

Let ABC be an equilateral triangle as shown below:

Here, $\mathrm{BC}=\mathrm{AC}=\mathrm{AB}$ (Since the length of all sides is same)
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}$ (Sides opposite to the equal angles are equal.)
Also, we know that
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 3 \angle \mathrm{~A}=180^{\circ}$
$\Rightarrow \angle \mathrm{A}=60^{\circ}$
$\therefore \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$
So, the angles of an equilateral triangle are always 60° each.

EXERCISE: 7.3

1. $\triangle A B C$ and $\triangle D B C$ are two isosceles triangles on the same base $B C$ and vertices A and D are on the same side of BC (see Fig. 7.39). If AD is extended to intersect BC at \mathbf{P}, show that
(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
(ii) $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$
(iii) AP bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$.
(iv) AP is the perpendicular bisector of BC .

Fig. 7.39

Solution:

In the above question, it is given that $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are two isosceles triangles.
(i) $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$ are similar by SSS congruency because:
$\mathrm{AD}=\mathrm{AD}$ (It is the common arm)
$\mathrm{AB}=\mathrm{AC}($ Since $\triangle \mathrm{ABC}$ is isosceles $)$
$\mathrm{BD}=\mathrm{CD}$ (Since $\triangle \mathrm{DBC}$ is isosceles)
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$.
(ii) $\triangle \mathrm{ABP}$ and $\triangle \mathrm{ACP}$ are similar as:
$\mathrm{AP}=\mathrm{AP}$ (It is the common side)
$\angle \mathrm{PAB}=\angle \mathrm{PAC}($ by CPCT since $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD})$
$\mathrm{AB}=\mathrm{AC}($ Since $\triangle \mathrm{ABC}$ is isosceles)
So, $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$ by SAS congruency condition.
(iii) $\angle \mathrm{PAB}=\angle \mathrm{PAC}$ by CPCT as $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$.

AP bisects $\angle \mathrm{A}$. - (i)
Also, $\triangle \mathrm{BPD}$ and $\triangle \mathrm{CPD}$ are similar by SSS congruency as
$\mathrm{PD}=\mathrm{PD}$ (It is the common side)
$B D=C D($ Since $\triangle D B C$ is isosceles.)
$\mathrm{BP}=\mathrm{CP}($ by CPCT as $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP})$
So, $\triangle \mathrm{BPD} \cong \triangle \mathrm{CPD}$.
Thus, $\angle \mathrm{BDP}=\angle \mathrm{CDP}$ by CPCT. - (ii)
Now by comparing (i) and (ii) it can be said that AP bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$.
(iv) $\angle \mathrm{BPD}=\angle \mathrm{CPD}($ by CPCT as $\triangle \mathrm{BPD} \triangle \mathrm{CPD})$
and $\mathrm{BP}=\mathrm{CP}-$ (i)
also,
$\angle \mathrm{BPD}+\angle \mathrm{CPD}=180^{\circ}$ (Since BC is a straight line.)
$\Rightarrow 2 \angle \mathrm{BPD}=180^{\circ}$
$\Rightarrow \angle \mathrm{BPD}=90^{\circ}$-(ii)
Now, from equations (i) and (ii), it can be said that
AP is the perpendicular bisector of BC .
2. AD is an altitude of an isosceles triangle ABC in which $\mathrm{AB}=\mathrm{AC}$. Show that
(i) AD bisects BC (ii) AD bisects $\angle \mathrm{A}$.

Solution:

It is given that AD is an altitude and $\mathrm{AB}=\mathrm{AC}$. The diagram is as follows:

(i) In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$,
$\angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}$
$\mathrm{AB}=\mathrm{AC}$ (It is given in the question)
$\mathrm{AD}=\mathrm{AD}$ (Common arm)
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$ by RHS congruence condition.
Now, by the rule of CPCT,
$B D=C D$.
So, AD bisects BC
(ii) Again, by the rule of $\mathrm{CPCT}, \angle \mathrm{BAD}=\angle \mathrm{CAD}$

Hence, AD bisects $\angle \mathrm{A}$.
3. Two sides $A B$ and $B C$ and median $A M$ of one triangle $A B C$ are respectively equal to sides $P Q$ and $Q R$ and median PN of $\triangle P Q R$ (see Fig. 7.40). Show that:
(i) $\triangle \mathrm{ABM} \cong \triangle \mathrm{PQN}$
(ii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$

Fig. 7.40

Solution:

Given parameters are:
$\mathrm{AB}=\mathrm{PQ}$,
$\mathrm{BC}=\mathrm{QR}$ and
$\mathrm{AM}=\mathrm{PN}$
(i) $1 / 2 \mathrm{BC}=\mathrm{BM}$ and $1 / 2 \mathrm{QR}=\mathrm{QN}$ (Since AM and PN are medians)

Also, $\mathrm{BC}=\mathrm{QR}$
So, $1 / 2 \mathrm{BC}=1 / 2 \mathrm{QR}$
$\Rightarrow \mathrm{BM}=\mathrm{QN}$
In $\triangle \mathrm{ABM}$ and $\triangle \mathrm{PQN}$,
$\mathrm{AM}=\mathrm{PN}$ and $\mathrm{AB}=\mathrm{PQ}$ (As given in the question)
$\mathrm{BM}=\mathrm{QN}$ (Already proved)
$\therefore \triangle \mathrm{ABM} \cong \triangle \mathrm{PQN}$ by SSS congruency.
(ii) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,
$\mathrm{AB}=\mathrm{PQ}$ and $\mathrm{BC}=\mathrm{QR}$ (As given in the question)
$\angle \mathrm{ABC}=\angle \mathrm{PQR}($ by CPCT$)$
So, $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$ by SAS congruency.
4. BE and CF are two equal altitudes of a triangle ABC . Using RHS congruence rule, prove that the triangle ABC is isosceles.

Solution:

It is known that BE and CF are two equal altitudes.
Now, in $\triangle \mathrm{BEC}$ and $\triangle \mathrm{CFB}$,
$\angle \mathrm{BEC}=\angle \mathrm{CFB}=90^{\circ}$ (Same Altitudes)
$\mathrm{BC}=\mathrm{CB}($ Common side $)$
$\mathrm{BE}=\mathrm{CF}($ Common side $)$
So, $\triangle \mathrm{BEC} \cong \triangle \mathrm{CFB}$ by RHS congruence criterion.
Also, $\angle \mathrm{C}=\angle \mathrm{B}$ (by CPCT)
Therefore, $\mathrm{AB}=\mathrm{AC}$ as sides opposite to the equal angles is always equal.
5. ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$. Draw $\mathrm{AP} \perp \mathrm{BC}$ to show that $\angle \mathrm{B}=\angle \mathrm{C}$.

Solution:

In the question, it is given that $\mathrm{AB}=\mathrm{AC}$
Now, $\triangle \mathrm{ABP}$ and $\triangle \mathrm{ACP}$ are similar by RHS congruency as
$\angle \mathrm{APB}=\angle \mathrm{APC}=90^{\circ}(\mathrm{AP}$ is altitude $)$
$\mathrm{AB}=\mathrm{AC}$ (Given in the question)
$\mathrm{AP}=\mathrm{AP}($ Common side $)$
So, $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$.
$\therefore \angle \mathrm{B}=\angle \mathrm{C}$ (by CPCT)

EXERCISE: 7.4

1. Show that in a right-angled triangle, the hypotenuse is the longest side.

Solution:

It is known that $A B C$ is a triangle right angled at B.
We know that,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
Now, if $\angle B+\angle C=90^{\circ}$ then $\angle A$ has to be 90°.
Since A is the largest angle of the triangle, the side opposite to it must be the largest.
So, AB is the hypotenuse which will be the largest side of the above right-angled triangle i.e. $\triangle \mathrm{ABC}$.
2. In Fig. 7.48, sides AB and AC of $\triangle \mathrm{ABC}$ are extended to points P and Q respectively. Also, $\angle \mathrm{PBC}<\angle \mathrm{QCB}$. Show that AC $>\mathrm{AB}$.

Fig. 7.48

Solution:

It is given that $\angle \mathrm{PBC}<\angle \mathrm{QCB}$
We know that $\angle \mathrm{ABC}+\angle \mathrm{PBC}=180^{\circ}$
So, $\angle \mathrm{ABC}=180^{\circ}-\angle \mathrm{PBC}$
Also,
$\angle \mathrm{ACB}+\angle \mathrm{QCB}=180^{\circ}$
Therefore $\angle \mathrm{ACB}=180^{\circ}-\angle \mathrm{QCB}$
Now, since $\angle \mathrm{PBC}<\angle \mathrm{QCB}$,
$\therefore \angle \mathrm{ABC}>\angle \mathrm{ACB}$
Hence, $\mathrm{AC}>\mathrm{AB}$ as sides opposite to the larger angle is always larger.
3. In Fig. 7.49, $\angle \mathrm{B}<\angle \mathrm{A}$ and $\angle \mathrm{C}<\angle \mathrm{D}$. Show that $\mathrm{AD}<\mathrm{BC}$.

Fig. 7.49

Solution:

In the question, it is mentioned that angles B and angle C is smaller than angles A and D respectively i.e. $\angle \mathrm{B}<\angle \mathrm{A}$ and $\angle \mathrm{C}<\angle \mathrm{D}$.

Now,
Since the side opposite to the smaller angle is always smaller
$\mathrm{AO}<\mathrm{BO}-$ (i)
And OD < OC - (ii)
By adding equation (i) and equation (ii) we get
$\mathrm{AO}+\mathrm{OD}<\mathrm{BO}+\mathrm{OC}$
So, $\mathrm{AD}<\mathrm{BC}$
4. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see Fig. 7.50).

Show that $\angle A>\angle C$ and $\angle B>\angle D$.

Fig. 7.50

Solution:

In $\triangle \mathrm{ABD}$, we see that
$\mathrm{AB}<\mathrm{AD}<\mathrm{BD}$
So, $\angle \mathrm{ADB}<\angle \mathrm{ABD}$ - (i) (Since angle opposite to longer side is always larger)
Now, in $\triangle B C D$,
$\mathrm{BC}<\mathrm{DC}<\mathrm{BD}$
Hence, it can be concluded that
$\angle \mathrm{BDC}<\angle \mathrm{CBD}$ - (ii)
Now, by adding equation (i) and equation (ii) we get,
$\angle \mathrm{ADB}+\angle \mathrm{BDC}<\angle \mathrm{ABD}+\angle \mathrm{CBD}$
$\angle \mathrm{ADC}<\angle \mathrm{ABC}$
$\angle B>\angle D$
Similarly, In triangle ABC ,
$\angle A C B<\angle B A C$ - (iii) (Since the angle opposite to the longer side is always larger)
Now, In $\triangle \mathrm{ADC}$,
$\angle \mathrm{DCA}<\angle \mathrm{DAC}$ - (iv)
By adding equation (iii) and equation (iv) we get,
$\angle \mathrm{ACB}+\angle \mathrm{DCA}<\angle \mathrm{BAC}+\angle \mathrm{DAC}$
$\Rightarrow \angle \mathrm{BCD}<\angle \mathrm{BAD}$
$\therefore \angle \mathrm{A}>\angle \mathrm{C}$
5. In Fig 7.51, $\mathrm{PR}>\mathrm{PQ}$ and PS bisect $\angle \mathrm{QPR}$. Prove that $\angle \mathrm{PSR}>\angle \mathrm{PSQ}$.

Fig. 7.51

Solution:

It is given that $\mathrm{PR}>\mathrm{PQ}$ and PS bisects $\angle \mathrm{QPR}$
Now we will have to prove that angle PSR is smaller than PSQ i.e. $\angle \mathrm{PSR}>\angle \mathrm{PSQ}$
Proof:
$\angle \mathrm{QPS}=\angle \mathrm{RPS}-$ (ii) (As PS bisects $\angle \mathrm{QPR})$
$\angle \mathrm{PQR}>\angle \mathrm{PRQ}-$ (i) $($ Since $\mathrm{PR}>\mathrm{PQ}$ as angle opposite to the larger side is always larger)
$\angle \mathrm{PSR}=\angle \mathrm{PQR}+\angle \mathrm{QPS}-$ (iii) (Since the exterior angle of a triangle equals to the sum of opposite interior angles)
$\angle \mathrm{PSQ}=\angle \mathrm{PRQ}+\angle \mathrm{RPS}-$ (iv) (As the exterior angle of a triangle equals to the sum of opposite interior angles)
By adding (i) and (ii)
$\angle \mathrm{PQR}+\angle \mathrm{QPS}>\angle \mathrm{PRQ}+\angle \mathrm{RPS}$
Thus, from (i), (ii), (iii) and (iv), we get
$\angle \mathrm{PSR}>\angle \mathrm{PSQ}$
6. Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Solution:

First, let " l " be a line segment and " B " be a point lying on it. A line AB perpendicular to l is now drawn. Also, let C be any other point on l. The diagram will be as follows:

To prove:
$\mathrm{AB}<\mathrm{AC}$
Proof:
In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$
Now, we know that
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\therefore \angle \mathrm{A}+\angle \mathrm{C}=90^{\circ}$
Hence, $\angle \mathrm{C}$ must be an acute angle which implies $\angle \mathrm{C}<\angle \mathrm{B}$
So, $\mathrm{AB}<\mathrm{AC}$ (As the side opposite to the larger angle is always larger)

