EXERCISE 8.1

1. The angles of a quadrilateral are in the ratio $3: 5: 9: 13$. Find all the angles of the quadrilateral.

Solution:

Let the common ratio between the angles be x .
We know that the sum of the interior angles of the quadrilateral $=360^{\circ}$

Now,
$3 x+5 x+9 x+13 x=360^{\circ}$
$\Rightarrow 30 \mathrm{x}=360^{\circ}$
$\Rightarrow \mathrm{x}=12^{\circ}$
, Angles of the quadrilateral are:
$3 \mathrm{x}=3 \times 12^{\circ}=36^{\circ}$
$5 \mathrm{x}=5 \times 12^{\circ}=60^{\circ}$
$9 \mathrm{x}=9 \times 12^{\circ}=108^{\circ}$
$13 x=13 \times 12^{\circ}=156^{\circ}$
2. If the diagonals of a parallelogram are equal, then show that it is a rectangle.

Solution:

Given that,
$\mathrm{AC}=\mathrm{BD}$
To show that ABCD is a rectangle if the diagonals of a parallelogram are equal

To show ABCD is a rectangle, we have to prove that one of its interior angles is right-angled.
Proof,
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BAD}$,
$\mathrm{AB}=\mathrm{BA}($ Common $)$
$\mathrm{BC}=\mathrm{AD}($ Opposite sides of a parallelogram are equal)
$\mathrm{AC}=\mathrm{BD}$ (Given)
Therefore, $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$ [SSS congruency]
$\angle \mathrm{A}=\angle \mathrm{B}$ [Corresponding parts of Congruent Triangles]
also,
$\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$ (Sum of the angles on the same side of the transversal)
$\Rightarrow 2 \angle \mathrm{~A}=180^{\circ}$
$\Rightarrow \angle \mathrm{A}=90^{\circ}=\angle \mathrm{B}$
Therefore, ABCD is a rectangle.
Hence Proved.
3. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Solution:

Let ABCD be a quadrilateral whose diagonals bisect each other at right angles.
Given that,
$\mathrm{OA}=\mathrm{OC}$
$\mathrm{OB}=\mathrm{OD}$
and $\angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{OCD}=\angle \mathrm{ODA}=90^{\circ}$
To show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus, we have to prove that ABCD is a parallelogram and $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}$

Proof,
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COB}$,
$\mathrm{OA}=\mathrm{OC}$ (Given)
$\angle \mathrm{AOB}=\angle \mathrm{COB}$ (Opposite sides of a parallelogram are equal)
$\mathrm{OB}=\mathrm{OB}$ (Common)
Therefore, $\triangle \mathrm{AOB} \cong \triangle \mathrm{COB}$ [SAS congruency]
Thus, $\mathrm{AB}=\mathrm{BC}[\mathrm{CPCT}]$
Similarly, we can prove,
$B C=C D$
$\mathrm{CD}=\mathrm{AD}$
$\mathrm{AD}=\mathrm{AB}$
, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}$
Opposite sides of a quadrilateral are equal. Hence, it is a parallelogram.
ABCD is rhombus as it is a parallelogram whose diagonals intersect at a right angle.
Hence Proved.
4. Show that the diagonals of a square are equal and bisect each other at right angles.

Solution:

Let ABCD be a square and its diagonals AC and BD intersect each other at O .

To show that,
$\mathrm{AC}=\mathrm{BD}$
$\mathrm{AO}=\mathrm{OC}$
and $\angle \mathrm{AOB}=90^{\circ}$

Proof,

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BAD}$,
$\mathrm{AB}=\mathrm{BA}($ Common $)$
$\angle \mathrm{ABC}=\angle \mathrm{BAD}=90^{\circ}$
$\mathrm{BC}=\mathrm{AD}$ (Given)
$\Delta \mathrm{ABC} \cong \triangle \mathrm{BAD}$ [SAS congruency]
Thus,
$\mathrm{AC}=\mathrm{BD}[\mathrm{CPCT}]$
diagonals are equal.
Now,
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$,
$\angle \mathrm{BAO}=\angle \mathrm{DCO}$ (Alternate interior angles)
$\angle \mathrm{AOB}=\angle \mathrm{COD}$ (Vertically opposite)
$\mathrm{AB}=\mathrm{CD}$ (Given)
,$\Delta \mathrm{AOB} \cong \Delta \mathrm{COD}$ [AAS congruency]

Thus,
$\mathrm{AO}=\mathrm{CO}[\mathrm{CPCT}]$.
, Diagonal bisect each other.
Now,
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COB}$,
$\mathrm{OB}=\mathrm{OB}$ (Given)
$\mathrm{AO}=\mathrm{CO}$ (diagonals are bisected)
$\mathrm{AB}=\mathrm{CB}$ (Sides of the square)
,$\Delta \mathrm{AOB} \cong \Delta \mathrm{COB}$ [SSS congruency]
also, $\angle \mathrm{AOB}=\angle \mathrm{COB}$
$\angle \mathrm{AOB}+\angle \mathrm{COB}=180^{\circ}($ Linear pair $)$
Thus, $\angle \mathrm{AOB}=\angle \mathrm{COB}=90^{\circ}$
, Diagonals bisect each other at right angles
5. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Solution:

Given that,
Let ABCD be a quadrilateral and its diagonals AC and BD bisect each other at a right angle at O .
To prove that,
The Quadrilateral ABCD is a square.
Proof,

In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$,
$\mathrm{AO}=\mathrm{CO}$ (Diagonals bisect each other)
$\angle \mathrm{AOB}=\angle \mathrm{COD}$ (Vertically opposite)
$\mathrm{OB}=\mathrm{OD}($ Diagonals bisect each other)
,$\Delta \mathrm{AOB} \cong \Delta \mathrm{COD}$ [SAS congruency]
Thus,
$\mathrm{AB}=\mathrm{CD}[\mathrm{CPCT}]-(\mathrm{i})$
also,
$\angle \mathrm{OAB}=\angle \mathrm{OCD}$ (Alternate interior angles)
$\Rightarrow \mathrm{AB} \| \mathrm{CD}$
Now,
In $\triangle \mathrm{AOD}$ and $\triangle \mathrm{COD}$,
$\mathrm{AO}=\mathrm{CO}$ (Diagonals bisect each other)
$\angle \mathrm{AOD}=\angle \mathrm{COD}$ (Vertically opposite)
$\mathrm{OD}=\mathrm{OD}($ Common $)$
,$\Delta \mathrm{AOD} \cong \Delta \mathrm{COD}$ [SAS congruency]
Thus,
$\mathrm{AD}=\mathrm{CD}[\mathrm{CPCT}]-$ (ii)
also,
$\mathrm{AD}=\mathrm{BC}$ and $\mathrm{AD}=\mathrm{CD}$
$\Rightarrow \mathrm{AD}=\mathrm{BC}=\mathrm{CD}=\mathrm{AB}-$ (ii)
also, $\angle \mathrm{ADC}=\angle \mathrm{BCD}$ [CPCT]
and $\angle \mathrm{ADC}+\angle \mathrm{BCD}=180^{\circ}$ (co-interior angles)
$\Rightarrow 2 \angle \mathrm{ADC}=180^{\circ}$
$\Rightarrow \angle \mathrm{ADC}=90^{\circ}-$ (iii)
One of the interior angles is a right angle.
Thus, from (i), (ii) and (iii), given quadrilateral $A B C D$ is a square.
Hence Proved.
6. Diagonal $A C$ of a parallelogram $A B C D$ bisects $\angle A$ (see Fig. 8.19). Show that
(i) it bisects $\angle \mathrm{C}$ also,
(ii) ABCD is a rhombus.

Fig. 8.19
Solution:
(i) In $\triangle \mathrm{ADC}$ and $\triangle \mathrm{CBA}$,
$\mathrm{AD}=\mathrm{CB}$ (Opposite sides of a parallelogram)
$\mathrm{DC}=\mathrm{BA}($ Opposite sides of a parallelogram)
$\mathrm{AC}=\mathrm{CA}($ Common Side $)$
, $\Delta \mathrm{ADC} \cong \Delta \mathrm{CBA}$ [SSS congruency]
Thus,
$\angle \mathrm{ACD}=\angle \mathrm{CAB}$ by CPCT
and $\angle \mathrm{CAB}=\angle \mathrm{CAD}$ (Given)
$\Rightarrow \angle \mathrm{ACD}=\angle \mathrm{BCA}$
Thus,
AC bisects $\angle \mathrm{C}$ also.
(ii) $\angle \mathrm{ACD}=\angle \mathrm{CAD}$ (Proved above)
$\Rightarrow \mathrm{AD}=\mathrm{CD}$ (Opposite sides of equal angles of a triangle are equal)
Also, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$ (Opposite sides of a parallelogram)
Thus,
ABCD is a rhombus.
7. ABCD is a rhombus. Show that diagonal AC bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C}$ and diagonal BD bisects $\angle \mathrm{B}$ as well as $\angle D$.

Solution:

Given that,
ABCD is a rhombus.
AC and BD are its diagonals.
Proof,
$\mathrm{AD}=\mathrm{CD}$ (Sides of a rhombus)
$\angle \mathrm{DAC}=\angle \mathrm{DCA}$ (Angles opposite of equal sides of a triangle are equal.)
also, $\mathrm{AB} \| \mathrm{CD}$
$\Rightarrow \angle \mathrm{DAC}=\angle \mathrm{BCA}$ (Alternate interior angles)
$\Rightarrow \angle \mathrm{DCA}=\angle \mathrm{BCA}$
, AC bisects $\angle \mathrm{C}$.
Similarly,
We can prove that diagonal AC bisects $\angle \mathrm{A}$.
Following the same method,
We can prove that the diagonal BD bisects $\angle \mathrm{B}$ and $\angle \mathrm{D}$.
8. ABCD is a rectangle in which diagonal AC bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C}$. Show that:
(i) ABCD is a square
(ii) Diagonal BD bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$.

Solution:

(i) $\angle \mathrm{DAC}=\angle \mathrm{DCA}(\mathrm{AC}$ bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C})$
$\Rightarrow \mathrm{AD}=\mathrm{CD}$ (Sides opposite to equal angles of a triangle are equal)
also, $\mathrm{CD}=\mathrm{AB}$ (Opposite sides of a rectangle)
, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}$

Thus, ABCD is a square.
(ii) In $\triangle B C D$,
$\mathrm{BC}=\mathrm{CD}$
$\Rightarrow \angle \mathrm{CDB}=\angle \mathrm{CBD}$ (Angles opposite to equal sides are equal)
also, $\angle \mathrm{CDB}=\angle \mathrm{ABD}$ (Alternate interior angles)
$\Rightarrow \angle \mathrm{CBD}=\angle \mathrm{ABD}$

Thus, BD bisects $\angle \mathrm{B}$

Now,
$\angle \mathrm{CBD}=\angle \mathrm{ADB}$
$\Rightarrow \angle \mathrm{CDB}=\angle \mathrm{ADB}$

Thus, BD bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$.
9. In parallelogram $A B C D$, two points P and Q are taken on diagonal $B D$ such that $D P=B Q$ (see Fig. 8.20). Show that:
(i) $\triangle \mathrm{APD} \cong \triangle \mathrm{CQB}$
(ii) $\mathrm{AP}=\mathrm{CQ}$
(iii) $\Delta \mathrm{AQB} \cong \triangle \mathrm{CPD}$
(iv) $\mathrm{AQ}=\mathrm{CP}$
(v) APCQ is a parallelogram

Fig. 8.20
Solution:
(i) In $\triangle \mathrm{APD}$ and $\triangle \mathrm{CQB}$,

DP $=\mathrm{BQ}$ (Given)
$\angle \mathrm{ADP}=\angle \mathrm{CBQ}$ (Alternate interior angles)
$\mathrm{AD}=\mathrm{BC}$ (Opposite sides of a parallelogram)
Thus, $\triangle \mathrm{APD} \cong \triangle \mathrm{CQB}$ [SAS congruency]
(ii) $\mathrm{AP}=\mathrm{CQ}$ by CPCT as $\triangle \mathrm{APD} \cong \triangle \mathrm{CQB}$.
(iii) In $\triangle A Q B$ and $\triangle C P D$,
$\mathrm{BQ}=\mathrm{DP}($ Given $)$
$\angle \mathrm{ABQ}=\angle \mathrm{CDP}$ (Alternate interior angles)
$\mathrm{AB}=\mathrm{CD}$ (Opposite sides of a parallelogram)
Thus, $\triangle \mathrm{AQB} \cong \triangle \mathrm{CPD}$ [SAS congruency]
(iv) As $\triangle \mathrm{AQB} \cong \triangle \mathrm{CPD}$
$\mathrm{AQ}=\mathrm{CP}[\mathrm{CPCT}]$
(v) From the questions (ii) and (iv), it is clear that APCQ has equal opposite sides and also has equal and opposite angles., APCQ is a parallelogram.
10. $A B C D$ is a parallelogram and $A P$ and $C Q$ are perpendiculars from vertices A and C on diagonal $B D$ (see Fig. 8.21). Show that
(i) $\triangle \mathrm{APB} \cong \triangle \mathrm{CQD}$
(ii) $\mathrm{AP}=\mathrm{CQ}$

Fig. 8.21
Solution:
(i) In $\triangle \mathrm{APB}$ and $\triangle \mathrm{CQD}$,
$\angle \mathrm{ABP}=\angle \mathrm{CDQ}$ (Alternate interior angles)
$\angle \mathrm{APB}=\angle \mathrm{CQD}\left(=90^{\circ}\right.$ as AP and CQ are perpendiculars $)$
$\mathrm{AB}=\mathrm{CD}(\mathrm{ABCD}$ is a parallelogram $)$
,$\Delta \mathrm{APB} \cong \Delta \mathrm{CQD}$ [AAS congruency]
(ii) $\mathrm{As} \triangle \mathrm{APB} \cong \triangle \mathrm{CQD}$.
, $\mathrm{AP}=\mathrm{CQ}[\mathrm{CPCT}]$
11. In $\triangle A B C$ and $\triangle D E F, A B=D E, A B \| D E, B C=E F$ and $B C \| E F$. Vertices A, B and C are joined to vertices D, E and F, respectively (see Fig. 8.22).

Show that
(i) quadrilateral ABED is a parallelogram
(ii) quadrilateral BEFC is a parallelogram
(iii) $\mathrm{AD} \| \mathrm{CF}$ and $\mathrm{AD}=\mathrm{CF}$
(iv) quadrilateral ACFD is a parallelogram
(v) $\mathrm{AC}=\mathrm{DF}$
(vi) $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$.

Fig. 8.22
Solution:
(i) $\mathrm{AB}=\mathrm{DE}$ and $\mathrm{AB} \| \mathrm{DE}$ (Given)

Two opposite sides of a quadrilateral are equal and parallel to each other.
Thus, quadrilateral ABED is a parallelogram
(ii) Again $\mathrm{BC}=\mathrm{EF}$ and $\mathrm{BC} \| \mathrm{EF}$.

Thus, quadrilateral BEFC is a parallelogram.
(iii) Since ABED and BEFC are parallelograms.
$\Rightarrow \mathrm{AD}=\mathrm{BE}$ and $\mathrm{BE}=\mathrm{CF}$ (Opposite sides of a parallelogram are equal)
, $\mathrm{AD}=\mathrm{CF}$.
Also, $\mathrm{AD} \| \mathrm{BE}$ and $\mathrm{BE} \| \mathrm{CF}$ (Opposite sides of a parallelogram are parallel)
, AD \| CF
(iv) AD and CF are opposite sides of quadrilateral ACFD which are equal and parallel to each other. Thus, it is a parallelogram.
(v) Since ACFD is a parallelogram
$\mathrm{AC} \| \mathrm{DF}$ and $\mathrm{AC}=\mathrm{DF}$
(vi) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$,
$\mathrm{AB}=\mathrm{DE}$ (Given)
$\mathrm{BC}=\mathrm{EF}$ (Given)
$\mathrm{AC}=\mathrm{DF}($ Opposite sides of a parallelogram)
, $\Delta \mathrm{ABC} \cong \triangle \mathrm{DEF}$ [SSS congruency]
12. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{CD}$ and $\mathrm{AD}=\mathrm{BC}$ (see Fig. 8.23). Show that
(i) $\angle \mathrm{A}=\angle \mathrm{B}$
(ii) $\angle \mathrm{C}=\angle \mathrm{D}$
(iii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$
(iv) diagonal $\mathrm{AC}=$ diagonal BD
[Hint: Extend AB and draw a line through C parallel to DA intersecting AB produced at E.]

Fig. 8.23
Solution:
To Construct: Draw a line through C parallel to DA intersecting AB produced at E .
(i) $\mathrm{CE}=\mathrm{AD}$ (Opposite sides of a parallelogram)
$\mathrm{AD}=\mathrm{BC}($ Given $)$
, $\mathrm{BC}=\mathrm{CE}$
$\Rightarrow \angle \mathrm{CBE}=\angle \mathrm{CEB}$
also,
$\angle \mathrm{A}+\angle \mathrm{CBE}=180^{\circ}($ Angles on the same side of transversal and $\angle \mathrm{CBE}=\angle \mathrm{CEB})$
$\angle \mathrm{B}+\angle \mathrm{CBE}=180^{\circ}$ (As Linear pair)
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{B}$
(ii) $\angle \mathrm{A}+\angle \mathrm{D}=\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ (Angles on the same side of transversal)
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{D}=\angle \mathrm{A}+\angle \mathrm{C}(\angle \mathrm{A}=\angle \mathrm{B})$
$\Rightarrow \angle D=\angle C$
(iii) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BAD}$,
$\mathrm{AB}=\mathrm{AB}$ (Common)
$\angle \mathrm{DBA}=\angle \mathrm{CBA}$
$\mathrm{AD}=\mathrm{BC}$ (Given)
, $\Delta \mathrm{ABC} \cong \triangle \mathrm{BAD}$ [SAS congruency]
(iv) Diagonal $\mathrm{AC}=$ diagonal BD by CPCT as $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$.

EXERCISE 8.2

1. $A B C D$ is a quadrilateral in which P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ (see Fig 8.29). $A C$ is a diagonal. Show that:
(i) $\mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=1 / 2 \mathrm{AC}$
(ii) $\mathbf{P Q}=\mathbf{S R}$
(iii) PQRS is a parallelogram.

Fig. 8.29
Solution:
(i) In $\triangle \mathrm{DAC}$,
R is the mid point of $D C$ and S is the mid point of DA.
Thus by mid point theorem, $\mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=1 / 2 \mathrm{AC}$
(ii) In $\triangle \mathrm{BAC}$,
P is the mid point of $A B$ and Q is the mid point of $B C$.
Thus by mid point theorem, $\mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=1 / 2 \mathrm{AC}$
also, $\mathrm{SR}=1 / 2 \mathrm{AC}$
, $\mathrm{PQ}=\mathrm{SR}$
(iii) $\mathrm{SR} \| \mathrm{AC} \longrightarrow$ from question (i)
and, $\mathrm{PQ} \| \mathrm{AC} \longrightarrow$ from question (ii)
$\Rightarrow \mathrm{SR} \| \mathrm{PQ}$ - from (i) and (ii)
also, $\mathrm{PQ}=\mathrm{SR}$
, PQRS is a parallelogram.
2. $A B C D$ is a rhombus and P, Q, R and S are the mid-points of the sides $A B, B C, C D$ and $D A$, respectively. Show that the quadrilateral $P Q R S$ is a rectangle.

Solution:

Given in the question,
$A B C D$ is a rhombus and P, Q, R and S are the mid-points of the sides $A B, B C, C D$ and $D A$, respectively.
To Prove,
$P Q R S$ is a rectangle.
Construction,
Join AC and BD.
Proof:
In $\triangle \mathrm{DRS}$ and $\triangle \mathrm{BPQ}$,
$\mathrm{DS}=\mathrm{BQ}$ (Halves of the opposite sides of the rhombus)
$\angle \mathrm{SDR}=\angle \mathrm{QBP}$ (Opposite angles of the rhombus)
$\mathrm{DR}=\mathrm{BP}$ (Halves of the opposite sides of the rhombus)
, $\Delta \mathrm{DRS} \cong \triangle \mathrm{BPQ}$ [SAS congruency]
$\mathrm{RS}=\mathrm{PQ}[\mathrm{CPCT}]$
In $\triangle \mathrm{QCR}$ and $\triangle \mathrm{SAP}$,
$\mathrm{RC}=\mathrm{PA}$ (Halves of the opposite sides of the rhombus)
$\angle \mathrm{RCQ}=\angle \mathrm{PAS}$ (Opposite angles of the rhombus)
$\mathrm{CQ}=\mathrm{AS}$ (Halves of the opposite sides of the rhombus)
, $\Delta \mathrm{QCR} \cong \Delta \mathrm{SAP}$ [SAS congruency]
$\mathrm{RQ}=\mathrm{SP}[\mathrm{CPCT}]$
Now,

In $\triangle \mathrm{CDB}$,

R and Q are the mid points of CD and BC , respectively.
$\Rightarrow \mathrm{QR} \| \mathrm{BD}$
also,
P and S are the mid points of $A D$ and $A B$, respectively.
$\Rightarrow \mathrm{PS} \| \mathrm{BD}$
$\Rightarrow \mathrm{QR} \| \mathrm{PS}$
, PQRS is a parallelogram.
also, $\angle \mathrm{PQR}=90^{\circ}$

Now,
In PQRS,
$\mathrm{RS}=\mathrm{PQ}$ and $\mathrm{RQ}=\mathrm{SP}$ from (i) and (ii)
$\angle \mathrm{Q}=90^{\circ}$
, PQRS is a rectangle.
3. $A B C D$ is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$, respectively. Show that the quadrilateral $P Q R S$ is a rhombus.

Solution:

Given in the question,
$A B C D$ is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$, respectively.
Construction,
Join AC and BD.
To Prove,

PQRS is a rhombus.

Proof:
In $\triangle \mathrm{ABC}$
P and Q are the mid-points of $A B$ and $B C$, respectively
, $\mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=1 / 2 \mathrm{AC}($ Midpoint theorem $)-(\mathrm{i})$
In $\triangle \mathrm{ADC}$,
SR \| AC and $\mathrm{SR}=1 / 2 \mathrm{AC}$ (Midpoint theorem) - (ii)
So, $\mathrm{PQ} \| \mathrm{SR}$ and $\mathrm{PQ}=\mathrm{SR}$

As in quadrilateral PQRS one pair of opposite sides is equal and parallel to each other, so, it is a parallelogram.
, $\mathrm{PS} \| \mathrm{QR}$ and $\mathrm{PS}=\mathrm{QR}($ Opposite sides of parallelogram $)$ - (iii)
Now,
In $\triangle \mathrm{BCD}$,
Q and R are mid points of side $B C$ and $C D$, respectively.
, $\mathrm{QR} \| \mathrm{BD}$ and $\mathrm{QR}=1 / 2 \mathrm{BD}$ (Midpoint theorem) - (iv)
$\mathrm{AC}=\mathrm{BD}($ Diagonals of a rectangle are equal $)-(\mathrm{v})$
From equations (i), (ii), (iii), (iv) and (v),
$\mathrm{PQ}=\mathrm{QR}=\mathrm{SR}=\mathrm{PS}$
So, PQRS is a rhombus.
Hence Proved
4. $A B C D$ is a trapezium in which $A B \| D C, B D$ is a diagonal and E is the mid-point of $A D$. A line is drawn through E parallel to $A B$ intersecting BC at F (see Fig. 8.30). Show that F is the mid-point of BC.

Fig. 8.30
Solution:
Given that,
$A B C D$ is a trapezium in which $A B \| D C, B D$ is a diagonal and E is the mid-point of $A D$.
To prove,
F is the mid-point of $B C$.
Proof,
BD intersected EF at G.
In $\triangle \mathrm{BAD}$,
E is the mid point of $A D$ and also $E G \| A B$.
Thus, G is the mid point of BD (Converse of mid point theorem)
Now,
In $\triangle \mathrm{BDC}$,
G is the mid point of $B D$ and also $G F\|A B\| D C$.
Thus, F is the mid point of BC (Converse of mid point theorem)
5. In a parallelogram $\mathrm{ABCD}, \mathrm{E}$ and F are the mid-points of sides AB and CD , respectively (see Fig. 8.31). Show that the line segments AF and EC trisect the diagonal BD.

Fig. 8.31
Solution:
Given that,
ABCD is a parallelogram. E and F are the mid-points of sides AB and CD , respectively.
To show,
AF and EC trisect the diagonal BD .
Proof,
ABCD is a parallelogram
, $\mathrm{AB} \| \mathrm{CD}$
also, $\mathrm{AE} \| \mathrm{FC}$
Now,
$\mathrm{AB}=\mathrm{CD}($ Opposite sides of parallelogram ABCD$)$
$\Rightarrow 1 / 2 \mathrm{AB}=1 / 2 \mathrm{CD}$
$\Rightarrow \mathrm{AE}=\mathrm{FC}(\mathrm{E}$ and F are midpoints of side AB and CD$)$
AECF is a parallelogram (AE and CF are parallel and equal to each other)
AF ||EC (Opposite sides of a parallelogram)
Now,
In $\triangle \mathrm{DQC}$,
F is mid point of side DC and $\mathrm{FP} \| \mathrm{CQ}$ (as $\mathrm{AF} \| \mathrm{EC}$).
P is the mid-point of DQ (Converse of mid-point theorem)
$\Rightarrow \mathrm{DP}=\mathrm{PQ}$ — (i)

Similarly,
In $\triangle \mathrm{APB}$,
E is midpoint of side AB and $\mathrm{EQ} \| \mathrm{AP}$ (as $\mathrm{AF} \| \mathrm{EC}$).
Q is the mid-point of PB (Converse of mid-point theorem)
$\Rightarrow \mathrm{PQ}=\mathrm{QB}-$ (ii)
From equations (i) and (i),
$D P=P Q=B Q$
Hence, the line segments AF and EC trisect the diagonal BD .
Hence Proved.
6. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Solution:

Let ABCD be a quadrilateral and $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S the mid points of $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA , respectively.
Now,
In $\triangle \mathrm{ACD}$,
R and S are the mid points of CD and DA , respectively.
, SR \| AC.
Similarly we can show that,
PQ \| AC,
PS || BD and
QR \| BD
, PQRS is parallelogram.
PR and QS are the diagonals of the parallelogram PQRS. So, they will bisect each other.
7. $A B C$ is a triangle right angled at C. A line through the mid-point M of hypotenuse $A B$ and parallel to $B C$ intersects AC at D. Show that
(i) D is the mid-point of $A C$
(ii) $\mathrm{MD} \perp \mathrm{AC}$
(iii) $\mathbf{C M}=\mathbf{M A}=1 / 2 \mathrm{AB}$

Solution:

(i) In $\triangle \mathrm{ACB}$,
M is the midpoint of $A B$ and $M D \| B C$
, D is the midpoint of AC (Converse of mid point theorem)
(ii) $\angle \mathrm{ACB}=\angle \mathrm{ADM}$ (Corresponding angles)
also, $\angle \mathrm{ACB}=90^{\circ}$
, $\angle \mathrm{ADM}=90^{\circ}$ and $\mathrm{MD} \perp \mathrm{AC}$
(iii) In $\triangle A M D$ and $\triangle C M D$,
$\mathrm{AD}=\mathrm{CD}(\mathrm{D}$ is the midpoint of side AC$)$
$\angle \mathrm{ADM}=\angle \mathrm{CDM}\left(\right.$ Each $\left.90^{\circ}\right)$
$\mathrm{DM}=\mathrm{DM}$ (common)
,$\Delta \mathrm{AMD} \cong \Delta \mathrm{CMD}$ [SAS congruency]
$\mathrm{AM}=\mathrm{CM}[\mathrm{CPCT}]$
also, $\mathrm{AM}=1 / 2 \mathrm{AB}(\mathrm{M}$ is midpoint of AB$)$
Hence, $\mathrm{CM}=\mathrm{MA}=1 / 2 \mathrm{AB}$

