## EXERCISE 12.1

1. A point is on the $x$-axis. What are its $y$-coordinate and z-coordinates?

## Solution:

If a point is on the x -axis, then the coordinates of y and z are 0 .
So the point is $(x, 0,0)$.
2. A point is in the XZ-plane. What can you say about its $\boldsymbol{y}$-coordinate?

## Solution:

If a point is in the XZ plane, then its y -co-ordinate is 0 .
3. Name the octants in which the following points lie:
$(1,2,3),(4,-2,3),(4,-2,-5),(4,2,-5),(-4,2,-5),(-4,2,5),(-3,-1,6)(2,-4,-7)$.

## Solution:

Here is the table which represents the octants:

| Octants | I | II | III | IV | V | VI | VII | VIII |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | $+$ | - | - | $+$ | $+$ | - | - | + |
| y | $+$ | + | - | - | $+$ | + | - | - |
| Z | $+$ | + | $+$ | $+$ | - | - | - | - |

(i) $(1,2,3)$

Here, x is positive, y is positive, and z is positive.
So, it lies in the I octant.
(ii) $(4,-2,3)$

Here, x is positive, y is negative, and z is positive.
So, it lies in the IV octant.
(iii) $(4,-2,-5)$

Here, x is positive, y is negative, and z is negative.

So, it lies in the VIII octant.
(iv) $(4,2,-5)$

Here, x is positive, y is positive, and z is negative.
So, it lies in the V octant.
(v) $(-4,2,-5)$

Here, $x$ is negative, $y$ is positive, and $z$ is negative.
So, it lies in VI octant.
(vi) $(-4,2,5)$

Here, x is negative, y is positive, and z is positive.
So, it lies in the II octant.
(vii) $(-3,-1,6)$

Here, x is negative, y is negative, and z is positive.
So, it lies in the III octant.
(viii) $(2,-4,-7)$

Here, $x$ is positive, $y$ is negative, and $z$ is negative.
So, it lies in the VIII octant.
4. Fill in the blanks:
(i) The $x$-axis and $y$-axis, taken together, determine a plane known as $\qquad$ -
(ii) The coordinates of points in the XY-plane are of the form $\qquad$ .
(iii) Coordinate planes divide the space into $\qquad$ octants.

## Solution:

(i) The $x$-axis and y-axis, taken together, determine a plane known as XY Plane.
(ii) The coordinates of points in the XY-plane are of the form $(\mathbf{x}, \mathbf{y}, \mathbf{0})$.
(iii) Coordinate planes divide the space into eight octants.

