EXERCISE 12.2

1. Find the distance between the following pairs of points:
(i) $(2,3,5)$ and $(4,3,1)$
(ii) $(-3,7,2)$ and $(2,4,-1)$
(iii) $(-1,3,-4)$ and $(1,-3,4)$
(iv) $(2,-1,3)$ and $(-2,1,3)$

Solution:

(i) $(2,3,5)$ and $(4,3,1)$

Let P be $(2,3,5)$ and Q be $(4,3,1)$
By using the formula,
Distance PQ $=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$\mathrm{x}_{1}=2, \mathrm{y}_{1}=3, \mathrm{z}_{1}=5$
$\mathrm{x}_{2}=4, \mathrm{y}_{2}=3, \mathrm{z}_{2}=1$
Distance $P Q=\sqrt{ }\left[(4-2)^{2}+(3-3)^{2}+(1-5)^{2}\right]$
$=\sqrt{ }\left[(2)^{2}+0^{2}+(-4)^{2}\right]$
$=\sqrt{ }[4+0+16]$
$=\sqrt{ } 20$
$=2 \sqrt{ } 5$
\therefore The required distance is $2 \sqrt{ } 5$ units.
(ii) $(-3,7,2)$ and $(2,4,-1)$

Let P be $(-3,7,2)$ and Q be $(2,4,-1)$
By using the formula,
Distance $P Q=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$\mathrm{x}_{1}=-3, \mathrm{y}_{1}=7, \mathrm{z}_{1}=2$
$\mathrm{x}_{2}=2, \mathrm{y}_{2}=4, \mathrm{z}_{2}=-1$
Distance $\mathrm{PQ}=\sqrt{ }\left[(2-(-3))^{2}+(4-7)^{2}+(-1-2)^{2}\right]$
$=\sqrt{ }\left[(5)^{2}+(-3)^{2}+(-3)^{2}\right]$
$=\sqrt{ }[25+9+9]$
$=\sqrt{ } 43$
\therefore The required distance is $\sqrt{ } 43$ units.
(iii) $(-1,3,-4)$ and $(1,-3,4)$

Let P be $(-1,3,-4)$ and Q be $(1,-3,4)$
By using the formula,
Distance $P Q=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So here,
$\mathrm{x}_{1}=-1, \mathrm{y}_{1}=3, \mathrm{z}_{1}=-4$
$\mathrm{x}_{2}=1, \mathrm{y}_{2}=-3, \mathrm{z}_{2}=4$
Distance $P Q=\sqrt{ }\left[(1-(-1))^{2}+(-3-3)^{2}+(4-(-4))^{2}\right]$
$=\sqrt{ }\left[(2)^{2}+(-6)^{2}+(8)^{2}\right]$
$=\sqrt{ }[4+36+64]$
$=\sqrt{ } 104$
$=2 \sqrt{ } 26$
\therefore The required distance is $2 \sqrt{ } 26$ units.
(iv) $(2,-1,3)$ and $(-2,1,3)$

Let P be $(2,-1,3)$ and Q be $(-2,1,3)$
By using the formula,
Distance $P Q=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So here,
$\mathrm{x}_{1}=2, \mathrm{y}_{1}=-1, \mathrm{z}_{1}=3$
$\mathrm{x}_{2}=-2, \mathrm{y}_{2}=1, \mathrm{z}_{2}=3$
Distance $\mathrm{PQ}=\sqrt{ }\left[(-2-2)^{2}+(1-(-1))^{2}+(3-3)^{2}\right]$
$=\sqrt{ }\left[(-4)^{2}+(2)^{2}+(0)^{2}\right]$
$=\sqrt{ }[16+4+0]$
$=\sqrt{ } 20$
$=2 \sqrt{ } 5$
\therefore The required distance is $2 \sqrt{ } 5$ units.
2. Show that the points $(-2,3,5),(1,2,3)$ and $(7,0,-1)$ are collinear.

Solution:

If three points are collinear, then they lie on the same line.
First, let us calculate the distance between the 3 points
i.e., PQ, QR and PR

Calculating PQ
$\mathrm{P} \equiv(-2,3,5)$ and $\mathrm{Q} \equiv(1,2,3)$
By using the formula,
Distance $P Q=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$x_{1}=-2, y_{1}=3, z_{1}=5$
$\mathrm{x}_{2}=1, \mathrm{y}_{2}=2, \mathrm{z}_{2}=3$
Distance $\mathrm{PQ}=\sqrt{ }\left[(1-(-2))^{2}+(2-3)^{2}+(3-5)^{2}\right]$
$=\sqrt{ }\left[(3)^{2}+(-1)^{2}+(-2)^{2}\right]$
$=\sqrt{ }[9+1+4]$
$=\sqrt{ } 14$
Calculating QR
$\mathrm{Q} \equiv(1,2,3)$ and $\mathrm{R} \equiv(7,0,-1)$
By using the formula,
Distance $\mathrm{QR}=\sqrt{ }\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}\right]$
So, here
$\mathrm{x}_{1}=1, \mathrm{y}_{1}=2, \mathrm{z}_{1}=3$
$\mathrm{x}_{2}=7, \mathrm{y}_{2}=0, \mathrm{z}_{2}=-1$
Distance $\mathrm{QR}=\sqrt{ }\left[(7-1)^{2}+(0-2)^{2}+(-1-3)^{2}\right]$
$=\sqrt{ }\left[(6)^{2}+(-2)^{2}+(-4)^{2}\right]$
$=\sqrt{ }[36+4+16]$
$=\sqrt{ } 56$
$=2 \sqrt{ } 14$
Calculating PR
$\mathrm{P} \equiv(-2,3,5)$ and $\mathrm{R} \equiv(7,0,-1)$
By using the formula,
Distance $\operatorname{PR}=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So here,
$\mathrm{x}_{1}=-2, \mathrm{y}_{1}=3, \mathrm{z}_{1}=5$
$\mathrm{x}_{2}=7, \mathrm{y}_{2}=0, \mathrm{z}_{2}=-1$
Distance PR $=\sqrt{ }\left[(7-(-2))^{2}+(0-3)^{2}+(-1-5)^{2}\right]$
$=\sqrt{ }\left[(9)^{2}+(-3)^{2}+(-6)^{2}\right]$
$=\sqrt{ }[81+9+36]$
$=\sqrt{ } 126$
$=3 \sqrt{ } 14$
Thus, $\mathrm{PQ}=\sqrt{ } 14, \mathrm{QR}=2 \sqrt{ } 14$ and $\mathrm{PR}=3 \sqrt{ } 14$
So, $\mathrm{PQ}+\mathrm{QR}=\sqrt{ } 14+2 \sqrt{ } 14$
$=3 \sqrt{ } 14$
$=P R$
\therefore The points P, Q and R are collinear.
3. Verify the following:
(i) $(0,7,-10),(1,6,-6)$, and $(4,9,-6)$ are the vertices of an isosceles triangle.
(ii) $(0,7,10),(-1,6,6)$, and $(-4,9,6)$ are the vertices of a right-angled triangle.
(iii) $(-1,2,1),(1,-2,5),(4,-7,8)$, and $(2,-3,4)$ are the vertices of a parallelogram.

Solution:

(i) $(0,7,-10),(1,6,-6)$, and $(4,9,-6)$ are the vertices of an isosceles triangle.

Let us consider the points,
$\mathrm{P}(0,7,-10), \mathrm{Q}(1,6,-6)$ and $\mathrm{R}(4,9,-6)$
If any 2 sides are equal, it will be an isosceles triangle
So, first, let us calculate the distance of PQ, QR
Calculating PQ
$\mathrm{P} \equiv(0,7,-10)$ and $\mathrm{Q} \equiv(1,6,-6)$
By using the formula,
Distance PQ $=\sqrt{ }\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}\right]$
So, here,
$\mathrm{x}_{1}=0, \mathrm{y}_{1}=7, \mathrm{z}_{1}=-10$
$\mathrm{X}_{2}=1, \mathrm{y}_{2}=6, \mathrm{z}_{2}=-6$
Distance PQ $=\sqrt{ }\left[(1-0)^{2}+(6-7)^{2}+(-6-(-10))^{2}\right]$
$=\sqrt{ }\left[(1)^{2}+(-1)^{2}+(4)^{2}\right]$
$=\sqrt{ }[1+1+16]$
$=\sqrt{ } 18$

Calculating QR

$\mathrm{Q} \equiv(1,6,-6)$ and $\mathrm{R} \equiv(4,9,-6)$
By using the formula,
Distance $\mathrm{QR}=\sqrt{ }\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}\right]$
So, here
$\mathrm{x}_{1}=1, \mathrm{y}_{1}=6, \mathrm{z}_{1}=-6$
$\mathrm{x}_{2}=4, \mathrm{y}_{2}=9, \mathrm{z}_{2}=-6$
Distance $\mathrm{QR}=\sqrt{ }\left[(4-1)^{2}+(9-6)^{2}+(-6-(-6))^{2}\right]$
$=\sqrt{ }\left[(3)^{2}+(3)^{2}+(-6+6)^{2}\right]$
$=\sqrt{ }[9+9+0]$
$=\sqrt{ } 18$
Hence, $\mathrm{PQ}=\mathrm{QR}$
$18=18$
2 sides are equal
$\therefore \mathrm{PQR}$ is an isosceles triangle.
(ii) $(0,7,10),(-1,6,6)$, and $(-4,9,6)$ are the vertices of a right-angled triangle.

Let the points be
$\mathrm{P}(0,7,10), \mathrm{Q}(-1,6,6) \& \mathrm{R}(-4,9,6)$
First, let us calculate the distance of PQ, OR and PR
Calculating PQ
$\mathrm{P} \equiv(0,7,10)$ and $\mathrm{Q} \equiv(-1,6,6)$
By using the formula,
Distance $P Q=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So here,
$\mathrm{x}_{1}=0, \mathrm{y}_{1}=7, \mathrm{z}_{1}=10$
$\mathrm{x}_{2}=-1, \mathrm{y}_{2}=6, \mathrm{z}_{2}=6$
Distance $\mathrm{PQ}=\sqrt{ }\left[(-1-0)^{2}+(6-7)^{2}+(6-10)^{2}\right]$
$=\sqrt{\left[(-1)^{2}+(-1)^{2}+(-4)^{2}\right]}$
$=\sqrt{ }[1+1+16]$
$=\sqrt{ } 18$
Calculating QR
$\mathrm{Q} \equiv(1,6,-6)$ and $\mathrm{R} \equiv(4,9,-6)$
By using the formula,
Distance $\mathrm{QR}=\sqrt{ }\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}\right]$
So, here
$x_{1}=1, y_{1}=6, z_{1}=-6$
$\mathrm{x}_{2}=4, \mathrm{y}_{2}=9, \mathrm{z}_{2}=-6$

Distance $\mathrm{QR}=\sqrt{ }\left[(4-1)^{2}+(9-6)^{2}+(-6-(-6))^{2}\right]$
$=\sqrt{ }\left[(3)^{2}+(3)^{2}+(-6+6)^{2}\right]$
$=\sqrt{ }[9+9+0]$
$=\sqrt{ } 18$
Calculating PR
$\mathrm{P} \equiv(0,7,10)$ and $\mathrm{R} \equiv(-4,9,6)$
By using the formula,
Distance $P R=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$\mathrm{x}_{1}=0, \mathrm{y}_{1}=7, \mathrm{z}_{1}=10$
$\mathrm{X}_{2}=-4, \mathrm{y}_{2}=9, \mathrm{z}_{2}=6$
Distance $\operatorname{PR}=\sqrt{ }\left[(-4-0)^{2}+(9-7)^{2}+(6-10)^{2}\right]$
$=\sqrt{ }\left[(-4)^{2}+(2)^{2}+(-4)^{2}\right]$
$=\sqrt{ }[16+4+16]$
$=\sqrt{ } 36$
Now,
$\mathrm{PQ}^{2}+\mathrm{QR}^{2}=18+18$
$=36$
$=\mathrm{PR}^{2}$
By using the converse of Pythagoras theorem,
\therefore The given vertices $\mathrm{P}, \mathrm{Q} \& \mathrm{R}$ are the vertices of a right-angled triangle at Q .
(iii) $(-1,2,1),(1,-2,5),(4,-7,8)$, and $(2,-3,4)$ are the vertices of a parallelogram.

Let the points: $\mathrm{A}(-1,2,1), \mathrm{B}(1,-2,5), \mathrm{C}(4,-7,8) \& \mathrm{D}(2,-3,4)$
ABCD can be vertices of parallelogram only if opposite sides are equal.
i.e., $\mathrm{AB}=\mathrm{CD}$ and $\mathrm{BC}=\mathrm{AD}$

First, let us calculate the distance
Calculating AB
$\mathrm{A} \equiv(-1,2,1)$ and $\mathrm{B} \equiv(1,-2,5)$
By using the formula,
Distance $A B=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$\mathrm{x}_{1}=-1, \mathrm{y}_{1}=2, \mathrm{z}_{1}=1$
$\mathrm{X}_{2}=1, \mathrm{y}_{2}=-2, \mathrm{z}_{2}=5$
Distance $A B=\sqrt{ }\left[(1-(-1))^{2}+(-2-2)^{2}+(5-1)^{2}\right]$
$=\sqrt{ }\left[(2)^{2}+(-4)^{2}+(4)^{2}\right]$
$=\sqrt{ }[4+16+16]$
$=\sqrt{ } 36$
$=6$
Calculating BC
$\mathrm{B} \equiv(1,-2,5)$ and $\mathrm{C} \equiv(4,-7,8)$
By using the formula,
Distance $B C=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$\mathrm{X}_{1}=1, \mathrm{y}_{1}=-2, \mathrm{z}_{1}=5$
$\mathrm{X}_{2}=4, \mathrm{y}_{2}=-7, \mathrm{z}_{2}=8$
Distance $B C=\sqrt{ }\left[(4-1)^{2}+(-7-(-2))^{2}+(8-5)^{2}\right]$
$=\sqrt{ }\left[(3)^{2}+(-5)^{2}+(3)^{2}\right]$
$=\sqrt{ }[9+25+9]$
$=\sqrt{ } 43$
Calculating CD
$\mathrm{C} \equiv(4,-7,8)$ and $\mathrm{D} \equiv(2,-3,4)$
By using the formula,
Distance $C D=\sqrt{ }\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}\right]$
So here,
$\mathrm{x}_{1}=4, \mathrm{y}_{1}=-7, \mathrm{z}_{1}=8$
$\mathrm{x}_{2}=2, \mathrm{y}_{2}=-3, \mathrm{z}_{2}=4$
Distance $\left.C D=\sqrt{[}(2-4)^{2}+(-3-(-7))^{2}+(4-8)^{2}\right]$
$=\sqrt{ }\left[(-2)^{2}+(4)^{2}+(-4)^{2}\right]$
$=\sqrt{ }[4+16+16]$
$=\sqrt{ } 36$
$=6$
Calculating DA
$\mathrm{D} \equiv(2,-3,4)$ and $\mathrm{A} \equiv(-1,2,1)$
By using the formula,
Distance $\operatorname{DA}=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$x_{1}=2, y_{1}=-3, z_{1}=4$
$\mathrm{x}_{2}=-1, \mathrm{y}_{2}=2, \mathrm{z}_{2}=1$
Distance DA $=\sqrt{ }\left[(-1-2)^{2}+(2-(-3))^{2}+(1-4)^{2}\right]$
$=\sqrt{ }\left[(-3)^{2}+(5)^{2}+(-3)^{2}\right]$
$=\sqrt{ }[9+25+9]$
$=\sqrt{ } 43$
Since $\mathrm{AB}=\mathrm{CD}$ and $\mathrm{BC}=\mathrm{DA}$ (given),
In ABCD , both pairs of opposite sides are equal.
$\therefore \mathrm{ABCD}$ is a parallelogram.
4. Find the equation of the set of points which are equidistant from the points $(1,2,3)$ and $(3,2,-1)$.

Solution:

Let $\mathrm{A}(1,2,3) \& B(3,2,-1)$
Let point P be ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
Since it is given that point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is equal distance from point $\mathrm{A}(1,2,3) \& \mathrm{~B}(3,2,-1)$
i.e. $\mathrm{PA}=\mathrm{PB}$

First, let us calculate
Calculating PA
$\mathrm{P} \equiv(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\mathrm{A} \equiv(1,2,3)$
By using the formula,
Distance PA $=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$\mathrm{X}_{1}=\mathrm{x}, \mathrm{y}_{1}=\mathrm{y}, \mathrm{z}_{1}=\mathrm{z}$
$\mathrm{X}_{2}=1, \mathrm{y}_{2}=2, \mathrm{z}_{2}=3$
Distance $P A=\sqrt{ }\left[(1-x)^{2}+(2-y)^{2}+(3-z)^{2}\right]$
Calculating PB
$\mathrm{P} \equiv(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\mathrm{B} \equiv(3,2,-1)$
By using the formula,
Distance $P B=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$\mathrm{x}_{1}=\mathrm{x}, \mathrm{y}_{1}=\mathrm{y}, \mathrm{z}_{1}=\mathrm{z}$
$\mathrm{x}_{2}=3, \mathrm{y}_{2}=2, \mathrm{z}_{2}=-1$
Distance $\mathrm{PB}=\sqrt{ }\left[(3-\mathrm{x})^{2}+(2-\mathrm{y})^{2}+(-1-\mathrm{z})^{2}\right]$
Since $P A=P B$
Square on both sides, we get
$\mathrm{PA}^{2}=\mathrm{PB}^{2}$
$(1-x)^{2}+(2-y)^{2}+(3-z)^{2}=(3-x)^{2}+(2-y)^{2}+(-1-z)^{2}$
$\left(1+x^{2}-2 x\right)+\left(4+y^{2}-4 y\right)+\left(9+z^{2}-6 z\right)$
$\left(9+x^{2}-6 x\right)+\left(4+y^{2}-4 y\right)+\left(1+z^{2}+2 z\right)$
$-2 x-4 y-6 z+14=-6 x-4 y+2 z+14$
$4 x-8 z=0$
$x-2 z=0$
\therefore The required equation is $\mathrm{x}-2 \mathrm{z}=0$.
5. Find the equation of the set of points P, the sum of whose distances from $A(4,0,0)$ and $B(-4,0,0)$ is equal to 10.

Solution:

Let $\mathrm{A}(4,0,0) \& \mathrm{~B}(-4,0,0)$

Let the coordinates of point P be $(\mathrm{x}, \mathrm{y}, \mathrm{z})$
Calculating PA
$\mathrm{P} \equiv(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\mathrm{A} \equiv(4,0,0)$
By using the formula,
Distance PA $=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$\mathrm{x}_{1}=\mathrm{x}, \mathrm{y}_{1}=\mathrm{y}, \mathrm{z}_{1}=\mathrm{z}$
$\mathrm{X}_{2}=4, \mathrm{y}_{2}=0, \mathrm{z}_{2}=0$
Distance PA $=\sqrt{ }\left[(4-x)^{2}+(0-y)^{2}+(0-z)^{2}\right]$
Calculating PB,
$\mathrm{P} \equiv(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\mathrm{B} \equiv(-4,0,0)$
By using the formula,
Distance $P B=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So here,
$\mathrm{x}_{1}=\mathrm{x}, \mathrm{y}_{1}=\mathrm{y}, \mathrm{z}_{1}=\mathrm{z}$
$\mathrm{x}_{2}=-4, \mathrm{y}_{2}=0, \mathrm{z}_{2}=0$
Distance $P B=\sqrt{ }\left[(-4-x)^{2}+(0-y)^{2}+(0-z)^{2}\right]$
It is given that,
$\mathrm{PA}+\mathrm{PB}=10$
$\mathrm{PA}=10-\mathrm{PB}$
Square on both sides, we get
$\mathrm{PA}^{2}=(10-\mathrm{PB})^{2}$
$\mathrm{PA}^{2}=100+\mathrm{PB}^{2}-20 \mathrm{~PB}$
$(4-x)^{2}+(0-y)^{2}+(0-z)^{2}$
$100+(-4-x)^{2}+(0-y)^{2}+(0-z)^{2}-20$ PB
$\left(16+\mathrm{x}^{2}-8 \mathrm{x}\right)+\left(\mathrm{y}^{2}\right)+\left(\mathrm{z}^{2}\right)$
$100+\left(16+x^{2}+8 x\right)+\left(y^{2}\right)+\left(z^{2}\right)-20 P B$
$20 \mathrm{~PB}=16 x+100$
$5 \mathrm{~PB}=(4 \mathrm{x}+25)$
Square on both sides again, we get
$25 \mathrm{~PB}^{2}=16 \mathrm{x}^{2}+200 \mathrm{x}+625$
$25\left[(-4-x)^{2}+(0-y)^{2}+(0-z)^{2}\right]=16 x^{2}+200 x+625$
$25\left[x^{2}+y^{2}+z^{2}+8 x+16\right]=16 x^{2}+200 x+625$
$25 x^{2}+25 y^{2}+25 z^{2}+200 x+400=16 x^{2}+200 x+625$
$9 x^{2}+25 y^{2}+25 z^{2}-225=0$
\therefore The required equation is $9 \mathrm{x}^{2}+25 \mathrm{y}^{2}+25 \mathrm{z}^{2}-225=0$.

