EXERCISE 12.1

1. A point is on the x-axis. What are its y-coordinate and z-coordinates?

Solution:

If a point is on the x -axis, then the coordinates of y and z are 0 .
So the point is $(x, 0,0)$.
2. A point is in the XZ-plane. What can you say about its \boldsymbol{y}-coordinate?

Solution:

If a point is in the XZ plane, then its y -co-ordinate is 0 .
3. Name the octants in which the following points lie:
$(1,2,3),(4,-2,3),(4,-2,-5),(4,2,-5),(-4,2,-5),(-4,2,5),(-3,-1,6)(2,-4,-7)$.

Solution:

Here is the table which represents the octants:

Octants	I	II	III	IV	V	VI	VII	VIII
X	$+$	-	-	$+$	+	-	-	+
y	$+$	+	-	-	+	+	-	-
Z	$+$	+	$+$	$+$	-	-	-	-

(i) $(1,2,3)$

Here, x is positive, y is positive, and z is positive.
So, it lies in the I octant.
(ii) $(4,-2,3)$

Here, x is positive, y is negative, and z is positive.
So, it lies in the IV octant.
(iii) $(4,-2,-5)$

Here, x is positive, y is negative, and z is negative.

So, it lies in the VIII octant.
(iv) $(4,2,-5)$

Here, x is positive, y is positive, and z is negative.
So, it lies in the V octant.
(v) $(-4,2,-5)$

Here, x is negative, y is positive, and z is negative.
So, it lies in VI octant.
(vi) $(-4,2,5)$

Here, x is negative, y is positive, and z is positive.
So, it lies in the II octant.
(vii) $(-3,-1,6)$

Here, x is negative, y is negative, and z is positive.
So, it lies in the III octant.
(viii) $(2,-4,-7)$

Here, x is positive, y is negative, and z is negative.
So, it lies in the VIII octant.
4. Fill in the blanks:
(i) The x-axis and y-axis, taken together, determine a plane known as \qquad -
(ii) The coordinates of points in the XY-plane are of the form \qquad .
(iii) Coordinate planes divide the space into \qquad octants.

Solution:

(i) The x-axis and y-axis, taken together, determine a plane known as XY Plane.
(ii) The coordinates of points in the XY-plane are of the form $(\mathbf{x}, \mathbf{y}, \mathbf{0})$.
(iii) Coordinate planes divide the space into eight octants.

EXERCISE 12.2

1. Find the distance between the following pairs of points:
(i) $(2,3,5)$ and $(4,3,1)$
(ii) $(-3,7,2)$ and $(2,4,-1)$
(iii) $(-1,3,-4)$ and $(1,-3,4)$
(iv) $(2,-1,3)$ and $(-2,1,3)$

Solution:

(i) $(2,3,5)$ and $(4,3,1)$

Let P be $(2,3,5)$ and Q be $(4,3,1)$
By using the formula,
Distance PQ $=\sqrt{ }\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}\right]$
So, here
$\mathrm{x}_{1}=2, \mathrm{y}_{1}=3, \mathrm{z}_{1}=5$
$\mathrm{x}_{2}=4, \mathrm{y}_{2}=3, \mathrm{z}_{2}=1$
Distance $P Q=\sqrt{ }\left[(4-2)^{2}+(3-3)^{2}+(1-5)^{2}\right]$
$=\sqrt{ }\left[(2)^{2}+0^{2}+(-4)^{2}\right]$
$=\sqrt{ }[4+0+16]$
$=\sqrt{ } 20$
$=2 \sqrt{ } 5$
\therefore The required distance is $2 \sqrt{ } 5$ units.
(ii) $(-3,7,2)$ and $(2,4,-1)$

Let P be $(-3,7,2)$ and Q be $(2,4,-1)$
By using the formula,
Distance PQ $=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$\mathrm{x}_{1}=-3, \mathrm{y}_{1}=7, \mathrm{z}_{1}=2$
$\mathrm{x}_{2}=2, \mathrm{y}_{2}=4, \mathrm{z}_{2}=-1$
Distance $\mathrm{PQ}=\sqrt{ }\left[(2-(-3))^{2}+(4-7)^{2}+(-1-2)^{2}\right]$
$=\sqrt{ }\left[(5)^{2}+(-3)^{2}+(-3)^{2}\right]$
$=\sqrt{ }[25+9+9]$
$=\sqrt{ } 43$
\therefore The required distance is $\sqrt{ } 43$ units.
(iii) $(-1,3,-4)$ and $(1,-3,4)$

Let P be $(-1,3,-4)$ and Q be $(1,-3,4)$
By using the formula,
Distance $P Q=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So here,
$\mathrm{x}_{1}=-1, \mathrm{y}_{1}=3, \mathrm{z}_{1}=-4$
$\mathrm{x}_{2}=1, \mathrm{y}_{2}=-3, \mathrm{z}_{2}=4$
Distance $\mathrm{PQ}=\sqrt{ }\left[(1-(-1))^{2}+(-3-3)^{2}+(4-(-4))^{2}\right]$
$=\sqrt{ }\left[(2)^{2}+(-6)^{2}+(8)^{2}\right]$
$=\sqrt{ }[4+36+64]$
$=\sqrt{ } 104$
$=2 \sqrt{ } 26$
\therefore The required distance is $2 \sqrt{ } 26$ units.
(iv) $(2,-1,3)$ and $(-2,1,3)$

Let P be $(2,-1,3)$ and Q be $(-2,1,3)$
By using the formula,
Distance $\mathrm{PQ}=\sqrt{ }\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}\right]$
So here,
$\mathrm{x}_{1}=2, \mathrm{y}_{1}=-1, \mathrm{z}_{1}=3$
$\mathrm{x}_{2}=-2, \mathrm{y}_{2}=1, \mathrm{z}_{2}=3$
Distance $\mathrm{PQ}=\sqrt{ }\left[(-2-2)^{2}+(1-(-1))^{2}+(3-3)^{2}\right]$
$=\sqrt{ }\left[(-4)^{2}+(2)^{2}+(0)^{2}\right]$
$=\sqrt{ }[16+4+0]$
$=\sqrt{ } 20$
$=2 \sqrt{ } 5$
\therefore The required distance is $2 \sqrt{ } 5$ units.
2. Show that the points $(-2,3,5),(1,2,3)$ and $(7,0,-1)$ are collinear.

Solution:

If three points are collinear, then they lie on the same line.
First, let us calculate the distance between the 3 points
i.e., PQ, QR and PR

Calculating PQ
$\mathrm{P} \equiv(-2,3,5)$ and $\mathrm{Q} \equiv(1,2,3)$
By using the formula,
Distance $P Q=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$x_{1}=-2, y_{1}=3, z_{1}=5$
$\mathrm{x}_{2}=1, \mathrm{y}_{2}=2, \mathrm{z}_{2}=3$
Distance $\mathrm{PQ}=\sqrt{ }\left[(1-(-2))^{2}+(2-3)^{2}+(3-5)^{2}\right]$
$=\sqrt{ }\left[(3)^{2}+(-1)^{2}+(-2)^{2}\right]$
$=\sqrt{ }[9+1+4]$
$=\sqrt{ } 14$
Calculating QR
$\mathrm{Q} \equiv(1,2,3)$ and $\mathrm{R} \equiv(7,0,-1)$
By using the formula,
Distance $\mathrm{QR}=\sqrt{ }\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}\right]$
So, here
$\mathrm{x}_{1}=1, \mathrm{y}_{1}=2, \mathrm{z}_{1}=3$
$\mathrm{x}_{2}=7, \mathrm{y}_{2}=0, \mathrm{z}_{2}=-1$
Distance $\mathrm{QR}=\sqrt{ }\left[(7-1)^{2}+(0-2)^{2}+(-1-3)^{2}\right]$
$=\sqrt{ }\left[(6)^{2}+(-2)^{2}+(-4)^{2}\right]$
$=\sqrt{ }[36+4+16]$
$=\sqrt{ } 56$
$=2 \sqrt{ } 14$
Calculating PR
$\mathrm{P} \equiv(-2,3,5)$ and $\mathrm{R} \equiv(7,0,-1)$
By using the formula,
Distance $\operatorname{PR}=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So here,
$\mathrm{x}_{1}=-2, \mathrm{y}_{1}=3, \mathrm{z}_{1}=5$
$\mathrm{x}_{2}=7, \mathrm{y}_{2}=0, \mathrm{z}_{2}=-1$
Distance $\operatorname{PR}=\sqrt{ }\left[(7-(-2))^{2}+(0-3)^{2}+(-1-5)^{2}\right]$
$=\sqrt{ }\left[(9)^{2}+(-3)^{2}+(-6)^{2}\right]$
$=\sqrt{ }[81+9+36]$
$=\sqrt{ } 126$
$=3 \sqrt{ } 14$
Thus, $\mathrm{PQ}=\sqrt{ } 14, \mathrm{QR}=2 \sqrt{ } 14$ and $\mathrm{PR}=3 \sqrt{ } 14$
So, $\mathrm{PQ}+\mathrm{QR}=\sqrt{ } 14+2 \sqrt{ } 14$
$=3 \sqrt{ } 14$
$=P R$
\therefore The points P, Q and R are collinear.
3. Verify the following:
(i) $(0,7,-10),(1,6,-6)$, and $(4,9,-6)$ are the vertices of an isosceles triangle.
(ii) $(0,7,10),(-1,6,6)$, and $(-4,9,6)$ are the vertices of a right-angled triangle.
(iii) $(-1,2,1),(1,-2,5),(4,-7,8)$, and $(2,-3,4)$ are the vertices of a parallelogram.

Solution:

(i) $(0,7,-10),(1,6,-6)$, and $(4,9,-6)$ are the vertices of an isosceles triangle.

Let us consider the points,
$\mathrm{P}(0,7,-10), \mathrm{Q}(1,6,-6)$ and $\mathrm{R}(4,9,-6)$
If any 2 sides are equal, it will be an isosceles triangle
So, first, let us calculate the distance of PQ, QR
Calculating PQ
$\mathrm{P} \equiv(0,7,-10)$ and $\mathrm{Q} \equiv(1,6,-6)$
By using the formula,
Distance PQ $=\sqrt{ }\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}\right]$
So, here,
$\mathrm{x}_{1}=0, \mathrm{y}_{1}=7, \mathrm{z}_{1}=-10$
$\mathrm{X}_{2}=1, \mathrm{y}_{2}=6, \mathrm{z}_{2}=-6$
Distance PQ $=\sqrt{ }\left[(1-0)^{2}+(6-7)^{2}+(-6-(-10))^{2}\right]$
$=\sqrt{ }\left[(1)^{2}+(-1)^{2}+(4)^{2}\right]$
$=\sqrt{ }[1+1+16]$
$=\sqrt{ } 18$

Calculating QR

$\mathrm{Q} \equiv(1,6,-6)$ and $\mathrm{R} \equiv(4,9,-6)$
By using the formula,
Distance $\mathrm{QR}=\sqrt{ }\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}\right]$
So, here
$\mathrm{x}_{1}=1, \mathrm{y}_{1}=6, \mathrm{z}_{1}=-6$
$\mathrm{x}_{2}=4, \mathrm{y}_{2}=9, \mathrm{z}_{2}=-6$
Distance $\mathrm{QR}=\sqrt{ }\left[(4-1)^{2}+(9-6)^{2}+(-6-(-6))^{2}\right]$
$=\sqrt{ }\left[(3)^{2}+(3)^{2}+(-6+6)^{2}\right]$
$=\sqrt{ }[9+9+0]$
$=\sqrt{ } 18$
Hence, $\mathrm{PQ}=\mathrm{QR}$
$18=18$
2 sides are equal
$\therefore \mathrm{PQR}$ is an isosceles triangle.
(ii) $(0,7,10),(-1,6,6)$, and $(-4,9,6)$ are the vertices of a right-angled triangle.

Let the points be
$\mathrm{P}(0,7,10), \mathrm{Q}(-1,6,6) \& \mathrm{R}(-4,9,6)$
First, let us calculate the distance of PQ, OR and PR
Calculating PQ
$\mathrm{P} \equiv(0,7,10)$ and $\mathrm{Q} \equiv(-1,6,6)$
By using the formula,
Distance $P Q=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So here,
$\mathrm{x}_{1}=0, \mathrm{y}_{1}=7, \mathrm{z}_{1}=10$
$\mathrm{x}_{2}=-1, \mathrm{y}_{2}=6, \mathrm{z}_{2}=6$
Distance $\mathrm{PQ}=\sqrt{ }\left[(-1-0)^{2}+(6-7)^{2}+(6-10)^{2}\right]$
$\left.=\sqrt{\left[(-1)^{2}\right.}+(-1)^{2}+(-4)^{2}\right]$
$=\sqrt{ }[1+1+16]$
$=\sqrt{ } 18$
Calculating QR
$\mathrm{Q} \equiv(1,6,-6)$ and $\mathrm{R} \equiv(4,9,-6)$
By using the formula,
Distance $\mathrm{QR}=\sqrt{ }\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}\right]$
So, here
$x_{1}=1, y_{1}=6, z_{1}=-6$
$\mathrm{x}_{2}=4, \mathrm{y}_{2}=9, \mathrm{z}_{2}=-6$

Distance $\mathrm{QR}=\sqrt{ }\left[(4-1)^{2}+(9-6)^{2}+(-6-(-6))^{2}\right]$
$=\sqrt{ }\left[(3)^{2}+(3)^{2}+(-6+6)^{2}\right]$
$=\sqrt{ }[9+9+0]$
$=\sqrt{ } 18$
Calculating PR
$\mathrm{P} \equiv(0,7,10)$ and $\mathrm{R} \equiv(-4,9,6)$
By using the formula,
Distance $P R=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$\mathrm{x}_{1}=0, \mathrm{y}_{1}=7, \mathrm{z}_{1}=10$
$\mathrm{X}_{2}=-4, \mathrm{y}_{2}=9, \mathrm{z}_{2}=6$
Distance $\operatorname{PR}=\sqrt{ }\left[(-4-0)^{2}+(9-7)^{2}+(6-10)^{2}\right]$
$=\sqrt{ }\left[(-4)^{2}+(2)^{2}+(-4)^{2}\right]$
$=\sqrt{ }[16+4+16]$
$=\sqrt{ } 36$
Now,
$\mathrm{PQ}^{2}+\mathrm{QR}^{2}=18+18$
$=36$
$=\mathrm{PR}^{2}$
By using the converse of Pythagoras theorem,
\therefore The given vertices $\mathrm{P}, \mathrm{Q} \& \mathrm{R}$ are the vertices of a right-angled triangle at Q .
(iii) $(-1,2,1),(1,-2,5),(4,-7,8)$, and $(2,-3,4)$ are the vertices of a parallelogram.

Let the points: $\mathrm{A}(-1,2,1), \mathrm{B}(1,-2,5), \mathrm{C}(4,-7,8) \& \mathrm{D}(2,-3,4)$
ABCD can be vertices of parallelogram only if opposite sides are equal.
i.e., $\mathrm{AB}=\mathrm{CD}$ and $\mathrm{BC}=\mathrm{AD}$

First, let us calculate the distance
Calculating AB
$\mathrm{A} \equiv(-1,2,1)$ and $\mathrm{B} \equiv(1,-2,5)$
By using the formula,
Distance $A B=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$\mathrm{x}_{1}=-1, \mathrm{y}_{1}=2, \mathrm{z}_{1}=1$
$\mathrm{X}_{2}=1, \mathrm{y}_{2}=-2, \mathrm{z}_{2}=5$
Distance $A B=\sqrt{ }\left[(1-(-1))^{2}+(-2-2)^{2}+(5-1)^{2}\right]$
$=\sqrt{ }\left[(2)^{2}+(-4)^{2}+(4)^{2}\right]$
$=\sqrt{ }[4+16+16]$
$=\sqrt{ } 36$
$=6$
Calculating BC
$\mathrm{B} \equiv(1,-2,5)$ and $\mathrm{C} \equiv(4,-7,8)$
By using the formula,
Distance $B C=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$\mathrm{X}_{1}=1, \mathrm{y}_{1}=-2, \mathrm{z}_{1}=5$
$\mathrm{X}_{2}=4, \mathrm{y}_{2}=-7, \mathrm{z}_{2}=8$
Distance $B C=\sqrt{ }\left[(4-1)^{2}+(-7-(-2))^{2}+(8-5)^{2}\right]$
$=\sqrt{ }\left[(3)^{2}+(-5)^{2}+(3)^{2}\right]$
$=\sqrt{ }[9+25+9]$
$=\sqrt{ } 43$
Calculating CD
$\mathrm{C} \equiv(4,-7,8)$ and $\mathrm{D} \equiv(2,-3,4)$
By using the formula,
Distance $C D=\sqrt{ }\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}\right]$
So here,
$\mathrm{x}_{1}=4, \mathrm{y}_{1}=-7, \mathrm{z}_{1}=8$
$\mathrm{x}_{2}=2, \mathrm{y}_{2}=-3, \mathrm{z}_{2}=4$
Distance $C D=\sqrt{ }\left[(2-4)^{2}+(-3-(-7))^{2}+(4-8)^{2}\right]$
$=\sqrt{ }\left[(-2)^{2}+(4)^{2}+(-4)^{2}\right]$
$=\sqrt{ }[4+16+16]$
$=\sqrt{ } 36$
$=6$
Calculating DA
$\mathrm{D} \equiv(2,-3,4)$ and $\mathrm{A} \equiv(-1,2,1)$
By using the formula,
Distance $\operatorname{DA}=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$x_{1}=2, y_{1}=-3, z_{1}=4$
$\mathrm{x}_{2}=-1, \mathrm{y}_{2}=2, \mathrm{z}_{2}=1$
Distance DA $=\sqrt{ }\left[(-1-2)^{2}+(2-(-3))^{2}+(1-4)^{2}\right]$
$=\sqrt{ }\left[(-3)^{2}+(5)^{2}+(-3)^{2}\right]$
$=\sqrt{ }[9+25+9]$
$=\sqrt{ } 43$
Since $\mathrm{AB}=\mathrm{CD}$ and $\mathrm{BC}=\mathrm{DA}$ (given),
In ABCD , both pairs of opposite sides are equal.
$\therefore \mathrm{ABCD}$ is a parallelogram.
4. Find the equation of the set of points which are equidistant from the points $(1,2,3)$ and $(3,2,-1)$.

Solution:

Let $\mathrm{A}(1,2,3) \& B(3,2,-1)$
Let point P be ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
Since it is given that point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is equal distance from point $\mathrm{A}(1,2,3) \& \mathrm{~B}(3,2,-1)$
i.e. $\mathrm{PA}=\mathrm{PB}$

First, let us calculate
Calculating PA
$\mathrm{P} \equiv(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\mathrm{A} \equiv(1,2,3)$
By using the formula,
Distance PA $=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$\mathrm{X}_{1}=\mathrm{x}, \mathrm{y}_{1}=\mathrm{y}, \mathrm{z}_{1}=\mathrm{z}$
$\mathrm{X}_{2}=1, \mathrm{y}_{2}=2, \mathrm{z}_{2}=3$
Distance $P A=\sqrt{ }\left[(1-x)^{2}+(2-y)^{2}+(3-z)^{2}\right]$
Calculating PB
$\mathrm{P} \equiv(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\mathrm{B} \equiv(3,2,-1)$
By using the formula,
Distance $P B=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$\mathrm{x}_{1}=\mathrm{x}, \mathrm{y}_{1}=\mathrm{y}, \mathrm{z}_{1}=\mathrm{z}$
$\mathrm{x}_{2}=3, \mathrm{y}_{2}=2, \mathrm{z}_{2}=-1$
Distance $\mathrm{PB}=\sqrt{ }\left[(3-\mathrm{x})^{2}+(2-\mathrm{y})^{2}+(-1-\mathrm{z})^{2}\right]$
Since $P A=P B$
Square on both sides, we get
$\mathrm{PA}^{2}=\mathrm{PB}^{2}$
$(1-x)^{2}+(2-y)^{2}+(3-z)^{2}=(3-x)^{2}+(2-y)^{2}+(-1-z)^{2}$
$\left(1+x^{2}-2 x\right)+\left(4+y^{2}-4 y\right)+\left(9+z^{2}-6 z\right)$
$\left(9+x^{2}-6 x\right)+\left(4+y^{2}-4 y\right)+\left(1+z^{2}+2 z\right)$
$-2 x-4 y-6 z+14=-6 x-4 y+2 z+14$
$4 x-8 z=0$
$x-2 z=0$
\therefore The required equation is $\mathrm{x}-2 \mathrm{z}=0$.
5. Find the equation of the set of points P, the sum of whose distances from $A(4,0,0)$ and $B(-4,0,0)$ is equal to 10.

Solution:

Let $\mathrm{A}(4,0,0) \& \mathrm{~B}(-4,0,0)$

Let the coordinates of point P be $(\mathrm{x}, \mathrm{y}, \mathrm{z})$
Calculating PA
$\mathrm{P} \equiv(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\mathrm{A} \equiv(4,0,0)$
By using the formula,
Distance PA $=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, here
$\mathrm{x}_{1}=\mathrm{x}, \mathrm{y}_{1}=\mathrm{y}, \mathrm{z}_{1}=\mathrm{z}$
$\mathrm{X}_{2}=4, \mathrm{y}_{2}=0, \mathrm{z}_{2}=0$
Distance PA $=\sqrt{ }\left[(4-x)^{2}+(0-y)^{2}+(0-z)^{2}\right]$
Calculating PB,
$\mathrm{P} \equiv(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\mathrm{B} \equiv(-4,0,0)$
By using the formula,
Distance $P B=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So here,
$\mathrm{x}_{1}=\mathrm{x}, \mathrm{y}_{1}=\mathrm{y}, \mathrm{z}_{1}=\mathrm{z}$
$\mathrm{x}_{2}=-4, \mathrm{y}_{2}=0, \mathrm{z}_{2}=0$
Distance $P B=\sqrt{ }\left[(-4-x)^{2}+(0-y)^{2}+(0-z)^{2}\right]$
It is given that,
$\mathrm{PA}+\mathrm{PB}=10$
$\mathrm{PA}=10-\mathrm{PB}$
Square on both sides, we get
$\mathrm{PA}^{2}=(10-\mathrm{PB})^{2}$
$\mathrm{PA}^{2}=100+\mathrm{PB}^{2}-20 \mathrm{~PB}$
$(4-x)^{2}+(0-y)^{2}+(0-z)^{2}$
$100+(-4-x)^{2}+(0-y)^{2}+(0-z)^{2}-20$ PB
$\left(16+\mathrm{x}^{2}-8 \mathrm{x}\right)+\left(\mathrm{y}^{2}\right)+\left(\mathrm{z}^{2}\right)$
$100+\left(16+x^{2}+8 x\right)+\left(y^{2}\right)+\left(z^{2}\right)-20 P B$
$20 \mathrm{~PB}=16 x+100$
$5 \mathrm{~PB}=(4 \mathrm{x}+25)$
Square on both sides again, we get
$25 \mathrm{~PB}^{2}=16 \mathrm{x}^{2}+200 \mathrm{x}+625$
$25\left[(-4-x)^{2}+(0-y)^{2}+(0-z)^{2}\right]=16 x^{2}+200 x+625$
$25\left[x^{2}+y^{2}+z^{2}+8 x+16\right]=16 x^{2}+200 x+625$
$25 x^{2}+25 y^{2}+25 z^{2}+200 x+400=16 x^{2}+200 x+625$
$9 x^{2}+25 y^{2}+25 z^{2}-225=0$
\therefore The required equation is $9 \mathrm{x}^{2}+25 \mathrm{y}^{2}+25 \mathrm{z}^{2}-225=0$.

EXERCISE 12.3

1. Find the coordinates of the point which divides the line segment joining the points $(-2,3,5)$ and $(1,-4,6)$ in the ratio (i) 2:3 internally, (ii) 2:3 externally.

Solution:

Let the line segment joining the points $\mathrm{P}(-2,3,5)$ and $\mathrm{Q}(1,-4,6)$ be PQ .
(i) 2:3 internally

By using the section formula,
We know that the coordinates of the point R, which divides the line segment joining two points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}\right.$, y_{2}, z_{2}) internally in the ratio m:n, is given by:

$$
\left(\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{my}_{2}+\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{mz}_{2}+\mathrm{nz}_{1}}{\mathrm{~m}+\mathrm{n}}\right)
$$

Upon comparing, we have
$\mathrm{x}_{1}=-2, \mathrm{y}_{1}=3, \mathrm{z}_{1}=5$;
$\mathrm{x}_{2}=1, \mathrm{y}_{2}=-4, \mathrm{z}_{2}=6$ and
$\mathrm{m}=2, \mathrm{n}=3$
So, the coordinates of the point which divide the line segment joining the points $\mathrm{P}(-2,3,5)$ and $\mathrm{Q}(1,-4,6)$ in the ratio $2: 3$ internally is given by:

$$
\begin{aligned}
& \left(\frac{2 \times 1+3 \times(-2)}{2+3}, \frac{2 \times(-4)+3 \times 3}{2+3}, \frac{2 \times 6+3 \times 5}{2+3}\right) \\
& =\left(\frac{2-6}{5}, \frac{-8+9}{5}, \frac{12+15}{5}\right) \\
& =\left(\frac{-4}{5}, \frac{1}{5}, \frac{27}{5}\right)
\end{aligned}
$$

Hence, the coordinates of the point which divides the line segment joining the points $(-2,3,5)$ and $(1,-4,6)$ is $(-4 / 5$, $1 / 5,27 / 5)$.
(ii) 2:3 externally

By using the section formula,
We know that the coordinates of the point R , which divides the line segment joining two points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}\right.$, y_{2}, z_{2}) externally in the ratio m:n, is given by:
$\left(\frac{\mathrm{mx}_{2}-\mathrm{nx}_{1}}{\mathrm{~m}-\mathrm{n}}, \frac{\mathrm{my}_{2}-\mathrm{ny}_{1}}{\mathrm{~m}-\mathrm{n}}, \frac{\mathrm{mz}_{2}-\mathrm{nz}_{1}}{\mathrm{~m}-\mathrm{n}}\right)$
Upon comparing, we have
$\mathrm{x}_{1}=-2, \mathrm{y}_{1}=3, \mathrm{z}_{1}=5$;
$\mathrm{x}_{2}=1, \mathrm{y}_{2}=-4, \mathrm{z}_{2}=6$ and
$\mathrm{m}=2, \mathrm{n}=3$
So, the coordinates of the point which divide the line segment joining the points $\mathrm{P}(-2,3,5)$ and $\mathrm{Q}(1,-4,6)$ in the ratio 2:3 externally is given by:
$\left(\frac{2 \times 1-3 \times(-2)}{2-3}, \frac{2 \times(-4)-3 \times 3}{2-3}, \frac{2 \times 6-3 \times 5}{2-3}\right)$
$=\left(\frac{2-(-6)}{-1}, \frac{-8-9}{-1}, \frac{12-15}{-1}\right)$
$=\left(\frac{8}{-1}, \frac{-17}{-1}, \frac{-3}{-1}\right)$
$=(-8,17,3)$
\therefore The coordinates of the point which divides the line segment joining the points $(-2,3,5)$ and $(1,-4,6)$ is $(-8,17,3)$.
2. Given that $P(3,2,-4), Q(5,4,-6)$ and $R(9,8,-10)$ are collinear. Find the ratio in which Q divides PR.

Solution:
Let us consider Q divides PR in the ratio $\mathrm{k}: 1$.
By using the section formula,
We know that the coordinates of the point R, which divides the line segment joining two points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}\right.$, y_{2}, z_{2}) internally in the ratio $m: n$, is given by:
$\left(\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{my}_{2}+\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{mz}_{2}+\mathrm{nz}_{1}}{\mathrm{~m}+\mathrm{n}}\right)$
Upon comparing, we have,
$\mathrm{x}_{1}=3, \mathrm{y}_{1}=2, \mathrm{z}_{1}=-4 ;$
$\mathrm{x}_{2}=9, \mathrm{y}_{2}=8, \mathrm{z}_{2}=-10$ and
$\mathrm{m}=\mathrm{k}, \mathrm{n}=1$

So, we have
$\left(\frac{9 \mathrm{k}+3}{\mathrm{k}+1}, \frac{8 \mathrm{k}+2}{\mathrm{k}+1}, \frac{-10 \mathrm{k}-4}{\mathrm{k}+1}\right)=(5,4,-6)$
$\frac{9 \mathrm{k}+3}{\mathrm{k}+1}=5, \frac{8 \mathrm{k}+2}{\mathrm{k}+1}=4, \frac{-10 \mathrm{k}-4}{\mathrm{k}+1}=-6$
$9 \mathrm{k}+3=5(\mathrm{k}+1)$
$9 \mathrm{k}+3=5 \mathrm{k}+5$
$9 \mathrm{k}-5 \mathrm{k}=5-3$
$4 \mathrm{k}=2$
$\mathrm{k}=2 / 4$
$=1 / 2$
Hence, the ratio in which Q divides PR is 1:2.
3. Find the ratio in which the YZ-plane divides the line segment formed by joining the points $(-2,4,7)$ and $(3,-$ $5,8)$.

Solution:

Let the line segment formed by joining the points $\mathrm{P}(-2,4,7)$ and $\mathrm{Q}(3,-5,8)$ be PQ .
We know that any point on the YZ-plane is of the form $(0, y, z)$.
So, let $\mathrm{R}(0, \mathrm{y}, \mathrm{z})$ divides the line segment PQ in the ratio $\mathrm{k}: 1$.
Then,
Upon comparing, we have,
$\mathrm{x}_{1}=-2, \mathrm{y}_{1}=4, \mathrm{z}_{1}=7$;
$\mathrm{x}_{2}=3, \mathrm{y}_{2}=-5, \mathrm{z}_{2}=8$ and
$\mathrm{m}=\mathrm{k}, \mathrm{n}=1$
By using the section formula,
We know that the coordinates of the point R, which divides the line segment joining two points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}\right.$, y_{2}, z_{2}) internally in the ratio $m: n$, is given by:

$$
\left(\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{my}_{2}+\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{mz}_{2}+\mathrm{nz}_{1}}{\mathrm{~m}+\mathrm{n}}\right)
$$

So we have,
$\left(\frac{3 \mathrm{k}-2}{\mathrm{k}+1}, \frac{-5 \mathrm{k}+4}{\mathrm{k}+1}, \frac{8 \mathrm{k}+7}{\mathrm{k}+1}\right)=(0, \mathrm{y}, \mathrm{z})$
$\frac{3 \mathrm{k}-2}{\mathrm{k}+1}=0$
$3 \mathrm{k}-2=0$
$3 \mathrm{k}=2$
$\mathrm{k}=2 / 3$
Hence, the ratio in which the YZ-plane divides the line segment formed by joining the points $(-2,4,7)$ and $(3,-5,8)$ is 2:3.
4. Using the section formula, show that the points $A(2,-3,4), B(-1,2,1)$ and $C(0,1 / 3,2)$ are collinear.

Solution:

Let point P divides AB in the ratio $\mathrm{k}: 1$.
Upon comparing, we have,
$\mathrm{x}_{1}=2, \mathrm{y}_{1}=-3, \mathrm{z}_{1}=4$;
$\mathrm{x}_{2}=-1, \mathrm{y}_{2}=2, \mathrm{z}_{2}=1$ and
$\mathrm{m}=\mathrm{k}, \mathrm{n}=1$
By using the section formula,
We know that the coordinates of the point R , which divides the line segment joining two points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}\right.$, y_{2}, z_{2}) internally in the ratio m:n, is given by:
$\left(\frac{\mathrm{mx}_{2}+n \mathrm{x}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{my}_{2}+\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{mz}_{2}+\mathrm{nz}_{1}}{\mathrm{~m}+\mathrm{n}}\right)$
So we have,
The coordinates of $P=\left(\frac{-k+2}{k+1}, \frac{2 k-3}{k+1}, \frac{k+4}{k+1}\right)$
Now, we check if, for some value of k , the point coincides with point C .
$\operatorname{Put}(-k+2) /(k+1)=0$
$-k+2=0$
$\mathrm{k}=2$
When $\mathrm{k}=2$, then $(2 \mathrm{k}-3) /(\mathrm{k}+1)=(2(2)-3) /(2+1)$
$=(4-3) / 3$
$=1 / 3$
And, $(k+4) /(k+1)=(2+4) /(2+1)$
$=6 / 3$
$=2$
$\therefore \mathrm{C}(0,1 / 3,2)$ is a point which divides AB in the ratio 2:1 and is the same as P .
Hence, A, B, and C are collinear.
5. Find the coordinates of the points which trisect the line segment joining the points $P(4,2,-6)$ and $Q(10,-16$, 6).

Solution:

Let $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ trisect the line segment joining the points $\mathrm{P}(4,2,-6)$ and $\mathrm{Q}(10,-16,6)$.
A divides the line segment PQ in the ratio 1:2.
Upon comparing, we have,
$\mathrm{x}_{1}=4, \mathrm{y}_{1}=2, \mathrm{z}_{1}=-6 ;$
$x_{2}=10, y_{2}=-16, z_{2}=6$ and
$\mathrm{m}=1, \mathrm{n}=2$
By using the section formula,
We know that the coordinates of the point R, which divides the line segment joining two points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}\right.$, y_{2}, z_{2}) internally in the ratio m:n, is given by:

$$
\left(\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{my}_{2}+\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{mz}_{2}+\mathrm{nz}_{1}}{\mathrm{~m}+\mathrm{n}}\right)
$$

So, we have

$$
\text { The coordinates of } \begin{aligned}
\mathrm{A} & =\left(\frac{1 \times 10+2 \times 4}{1+2}, \frac{1 \times(-16)+2 \times 2}{1+2}, \frac{1 \times 6+2 \times(-6)}{1+2}\right) \\
& =\left(\frac{18}{3}, \frac{-12}{3}, \frac{-6}{3}\right) \\
& =(6,-4,-2)
\end{aligned}
$$

Similarly, we know that B divides the line segment PQ in the ratio $2: 1$.
Upon comparing, we have,
$\mathrm{x}_{1}=4, \mathrm{y}_{1}=2, \mathrm{z}_{1}=-6 ;$
$x_{2}=10, y_{2}=-16, z_{2}=6$ and
$\mathrm{m}=2, \mathrm{n}=1$
By using the section formula,
We know that the coordinates of the point R, which divides the line segment joining two points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}\right.$, y_{2}, z_{2}) internally in the ratio m:n, is given by:
$\left(\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{my}_{2}+\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{mz}_{2}+\mathrm{nz}_{1}}{\mathrm{~m}+\mathrm{n}}\right)$
So, we have
The coordinates of $\mathrm{B}=\left(\frac{2 \times 10+1 \times 4}{2+1}, \frac{2 \times(-16)+1 \times 2}{2+1}, \frac{2 \times 6+1 \times(-6)}{2+1}\right)$

$$
\begin{aligned}
& =\left(\frac{24}{3}, \frac{-30}{3}, \frac{6}{3}\right) \\
& =(8,-10,2)
\end{aligned}
$$

\therefore The coordinates of the points which trisect the line segment joining the points $\mathrm{P}(4,2,-6)$ and $\mathrm{Q}(10,-16,6)$ are $(6,-$ $4,-2)$ and (8, -10, 2).

MISCELLANEOUS EXERCISE

1. Three vertices of a parallelogram $A B C D$ are $A(3,-1,2), B(1,2,-4)$ and $C(-1,1,2)$. Find the coordinates of the fourth vertex.

Solution:

Given:
ABCD is a parallelogram with vertices $\mathrm{A}(3,-1,2), \mathrm{B}(1,2,-4)$, and $\mathrm{C}(-1,1,2)$.
Where, $\mathrm{x}_{1}=3, \mathrm{y}_{1}=-1, \mathrm{z}_{1}=2$;
$\mathrm{x}_{2}=1, \mathrm{y}_{2}=2, \mathrm{z}_{2}=-4 ;$
$\mathrm{X}_{3}=-1, \mathrm{y}_{3}=1, \mathrm{z}_{3}=2$

Let the coordinates of the fourth vertex be $\mathrm{D}(\mathrm{x}, \mathrm{y}, \mathrm{z})$.
We know that the diagonals of a parallelogram bisect each other, so the midpoints of AC and BD are equal, i.e., Midpoint of $\mathrm{AC}=$ Midpoint of BD \qquad .(1)

Now, by the midpoint formula, we know that the coordinates of the mid-point of the line segment joining two points P $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ are $\left[\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right) / 2,\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right) / 2,\left(\mathrm{z}_{1}+\mathrm{z}_{2}\right) / 2\right]$

So we have,

Co-ordinates of the midpoint of AC :

$$
=\left(\frac{3-1}{2}, \frac{-1+1}{2}, \frac{2+2}{2}\right)
$$

$=(2 / 2,0 / 2,4 / 2)$
$=(1,0,2)$
Co-ordinates of the midpoint of BD :

$$
=\left(\frac{1+\mathrm{x}}{2}, \frac{2+\mathrm{y}}{2}, \frac{-4+\mathrm{z}}{2}\right)
$$

So, using (1), we have

$$
\begin{aligned}
& \left(\frac{1+x}{2}, \frac{2+y}{2}, \frac{-4+z}{2}\right)=(1,0,2) \\
& \frac{1+x}{2}=1, \frac{2+y}{2}=0, \frac{-4+z}{2}=2
\end{aligned}
$$

$1+\mathrm{x}=2,2+\mathrm{y}=0,-4+\mathrm{z}=4$
$\mathrm{x}=1, \mathrm{y}=-2, \mathrm{z}=8$
Hence, the coordinates of the fourth vertex are $\mathrm{D}(1,-2,8)$.
2. Find the lengths of the medians of the triangle with vertices $A(0,0,6), B(0,4,0)$ and $C(6,0,0)$.

Solution:
Given:
The vertices of the triangle are $\mathrm{A}(0,0,6), \mathrm{B}(0,4,0)$ and $\mathrm{C}(6,0,0)$.
$\mathrm{X}_{1}=0, \mathrm{y}_{1}=0, \mathrm{z}_{1}=6 ;$
$\mathrm{x}_{2}=0, \mathrm{y}_{2}=4, \mathrm{z}_{2}=0$;
$\mathrm{x}_{3}=6, \mathrm{y}_{3}=0, \mathrm{z}_{3}=0$

So, let the medians of this triangle be AD, BE and CF , corresponding to the vertices A, B and C , respectively.
D, E and F are the midpoints of the sides BC, AC and AB , respectively.
By the midpoint formula, the coordinates of the midpoint of the line segment joining two points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}\right.$, $\left.\mathrm{y}_{2}, \mathrm{z}_{2}\right)$ are $\left[\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right) / 2,\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right) / 2,\left(\mathrm{z}_{1}+\mathrm{z}_{2}\right) / 2\right]$

So, we have
The coordinates of D :

$$
\begin{aligned}
& =\left(\frac{0+6}{2}, \frac{4+0}{2}, \frac{0+0}{2}\right)=\left(\frac{6}{2}, \frac{4}{2}, \frac{0}{2}\right) \\
& =(3,2,0)
\end{aligned}
$$

The coordinates of E :

$$
\begin{aligned}
& =\left(\frac{0+6}{2}, \frac{0+0}{2}, \frac{6+0}{2}\right)=\left(\frac{6}{2}, \frac{0}{2}, \frac{6}{2}\right) \\
& =(3,0,3)
\end{aligned}
$$

And the coordinates of F :

$$
\begin{aligned}
& =\left(\frac{0+0}{2}, \frac{0+4}{2}, \frac{6+0}{2}\right)=\left(\frac{0}{2}, \frac{4}{2}, \frac{6}{2}\right) \\
& =(0,2,3)
\end{aligned}
$$

By the distance formula, the distance between two points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ is given by

$$
P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

So the lengths of the medians are:

$$
\begin{aligned}
\mathrm{AD} & =\sqrt{(3-0)^{2}+(2-0)^{2}+(0-6)^{2}}=\sqrt{3^{2}+2^{2}+(-6)^{2}}=\sqrt{9+4+36} \\
& =\sqrt{49}=7
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{BE} & =\sqrt{(3-0)^{2}+(0-4)^{2}+(3-0)^{2}}=\sqrt{3^{2}+(-4)^{2}+3^{2}}=\sqrt{9+16+9} \\
& =\sqrt{34} \\
\mathrm{CF} & =\sqrt{(0-6)^{2}+(2-0)^{2}+(3-0)^{2}}=\sqrt{(-6)^{2}+2^{2}+3^{2}}=\sqrt{36+4+9} \\
& =\sqrt{49}=7
\end{aligned}
$$

\therefore The lengths of the medians of the given triangle are $7, \sqrt{ } 34$ and 7 .
3. If the origin is the centroid of the triangle $P Q R$ with vertices $P(2 a, 2,6), Q(-4,3 b,-10)$ and $R(8,14,2 c)$, then find the values of a, b and c.

Solution:

Given:
The vertices of the triangle are $\mathrm{P}(2 \mathrm{a}, 2,6), \mathrm{Q}(-4,3 \mathrm{~b},-10)$ and $\mathrm{R}(8,14,2 \mathrm{c})$.
Where,
$\mathrm{x}_{1}=2 \mathrm{a}, \mathrm{y}_{1}=2, \mathrm{z}_{1}=6 ;$
$\mathrm{x}_{2}=-4, \mathrm{y}_{2}=3 \mathrm{~b}, \mathrm{z}_{2}=-10 ;$
$\mathrm{x}_{3}=8, \mathrm{y}_{3}=14, \mathrm{z}_{3}=2 \mathrm{c}$
We know that the coordinates of the centroid of the triangle, whose vertices are $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$, are $\left[\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}\right) / 3,\left(\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}\right) / 3,\left(\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}\right) / 3\right]$

So, the coordinates of the centroid of the triangle PQR are

$$
\left(\frac{2 a-4+8}{3}, \frac{2+3 b+14}{3}, \frac{6-10+2 c}{3}\right)=\left(\frac{2 a+4}{3}, \frac{3 b+16}{3}, \frac{2 c-4}{3}\right)
$$

Now, it is given that the origin $(0,0,0)$ is the centroid.
So, we have $\left(\frac{2 a+4}{3}, \frac{3 b+16}{3}, \frac{2 c-4}{3}\right)=(0,0,0)$
$\frac{2 a+4}{3}=0, \frac{3 b+16}{3}=0, \frac{2 c-4}{3}=0$
$2 \mathrm{a}+4=0,3 \mathrm{~b}+16=0,2 \mathrm{c}-4=0$
$\mathrm{a}=-2, \mathrm{~b}=-16 / 3, \mathrm{c}=2$
\therefore The values of a, b and c are $\mathrm{a}=-2, \mathrm{~b}=-16 / 3$, and $\mathrm{c}=2$.
4. Find the coordinates of a point on the y-axis, which are at a distance of $5 \sqrt{ } 2$ from the point $P(3,-2,5)$.

Solution:

Let the point on the y -axis be $\mathrm{A}(0, \mathrm{y}, 0)$.
Then, it is given that the distance between the points $\mathrm{A}(0, y, 0)$ and $\mathrm{P}(3,-2,5)$ is $5 \sqrt{ } 2$.
Now, by using the distance formula,
We know that the distance between two points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ is given by
Distance of PQ $=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
So, the distance between the points $\mathrm{A}(0, \mathrm{y}, 0)$ and $\mathrm{P}(3,-2,5)$ is given by
Distance of AP $=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
$=\sqrt{ }\left[(3-0)^{2}+(-2-y)^{2}+(5-0)^{2}\right]$
$=\sqrt{ }\left[3^{2}+(-2-y)^{2}+5^{2}\right]$
$=\sqrt{ }\left[(-2-y)^{2}+9+25\right]$
$\left.5 \sqrt{2}=\sqrt{\left[(-2-y)^{2}\right.}+34\right]$
Squaring on both sides, we get
$(-2-y)^{2}+34=25 \times 2$
$(-2-y)^{2}=50-34$
$4+y^{2}+(2 \times-2 \times-y)=16$
$y^{2}+4 y+4-16=0$
$y^{2}+4 y-12=0$
$y^{2}+6 y-2 y-12=0$
$y(y+6)-2(y+6)=0$
$(y+6)(y-2)=0$
$y=-6, y=2$
\therefore The points $(0,2,0)$ and $(0,-6,0)$ are the required points on the y-axis.
5. A point R with x-coordinate 4 lies on the line segment joining the points $P(2,-3,4)$ and $Q(8,0,10)$. Find the coordinates of the point R.
[Hint: Suppose R divides $P Q$ in the ratio k :1. The coordinates of the point R are given by
$\left.\left(\frac{8 \mathrm{k}+2}{\mathrm{k}+1}, \frac{-3}{\mathrm{k}+1}, \frac{10 \mathrm{k}+4}{\mathrm{k}+1}\right)\right]$

Solution:

Given:

The coordinates of the points are $\mathrm{P}(2,-3,4)$ and $\mathrm{Q}(8,0,10)$.
$\mathrm{X}_{1}=2, \mathrm{y}_{1}=-3, \mathrm{z}_{1}=4 ;$
$\mathrm{x}_{2}=8, \mathrm{y}_{2}=0, \mathrm{z}_{2}=10$
Let the coordinates of the required point be $(4, y, z)$.
So, let the point $\mathrm{R}(4, y, z)$ divides the line segment joining the points $\mathrm{P}(2,-3,4)$ and $\mathrm{Q}(8,0,10)$ in the ratio $\mathrm{k}: 1$.
By using the section formula,
We know that the coordinates of the point R , which divides the line segment joining two points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}\right.$, y_{2}, z_{2}) internally in the ratio $\mathrm{m}: \mathrm{n}$, is given by:

$$
\left(\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{my}_{2}+\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{mz}_{2}+\mathrm{nz}_{1}}{\mathrm{~m}+\mathrm{n}}\right)
$$

So, the coordinates of the point R are given by
$\left(\frac{8 k+2}{k+1}, \frac{-3}{k+1}, \frac{10 k+4}{k+1}\right)$

So, we have
$\left(\frac{8 k+2}{k+1}, \frac{-3}{k+1}, \frac{10 k+4}{k+1}\right)=(4, y, z)$
$\Rightarrow \frac{8 \mathrm{k}+2}{\mathrm{k}+1}=4$
$8 \mathrm{k}+2=4(\mathrm{k}+1)$
$8 \mathrm{k}+2=4 \mathrm{k}+4$
$8 \mathrm{k}-4 \mathrm{k}=4-2$
$4 \mathrm{k}=2$
$\mathrm{k}=2 / 4$
$=1 / 2$
Now, let us substitute the values, and we get
$\Rightarrow \mathrm{y}=\frac{-3}{\frac{1}{2}+1}=\frac{-3}{\frac{3}{2}}=\frac{-3 \times 2}{3}=-2$,
$\mathrm{z}=\frac{10\left(\frac{1}{2}\right)+4}{\frac{1}{2}+1}=\frac{5+4}{\frac{3}{2}}=\frac{9 \times 2}{3}=3 \times 2$
$=6$
\therefore The coordinates of the required point are $(4,-2,6)$.
6. If A and B be the points $(3,4,5)$ and $(-1,3,-7)$, respectively, find the equation of the set of points P such that $P A^{2}+P B^{2}=k^{2}$, where k is a constant.

Solution:

Given:
Points $\mathrm{A}(3,4,5)$ and $\mathrm{B}(-1,3,-7)$
$\mathrm{x}_{1}=3, \mathrm{y}_{1}=4, \mathrm{z}_{1}=5$;
$\mathrm{x}_{2}=-1, \mathrm{y}_{2}=3, \mathrm{z}_{2}=-7$;
$\mathrm{PA}^{2}+\mathrm{PB}^{2}=\mathrm{k}^{2}$
Let the point be $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$.

Now, by using the distance formula,
We know that the distance between two points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ is given by
$P Q=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}}$
So,
$P A=\sqrt{(3-x)^{2}+(4-y)^{2}+(5-z)^{2}}$
And
$P B=\sqrt{(-1-x)^{2}+(3-y)^{2}+(-7-z)^{2}}$
Now, substituting these values in (1), we have
$\left[(3-x)^{2}+(4-y)^{2}+(5-z)^{2}\right]+\left[(-1-x)^{2}+(3-y)^{2}+(-7-z)^{2}\right]=k^{2}\left[\left(9+x^{2}-6 x\right)+\left(16+y^{2}-8 y\right)+\left(25+z^{2}-10 z\right)\right]+[(1$
$\left.\left.+x^{2}+2 x\right)+\left(9+y^{2}-6 y\right)+\left(49+z^{2}+14 z\right)\right]=k^{2}$
$9+x^{2}-6 x+16+y^{2}-8 y+25+z^{2}-10 z+1+x^{2}+2 x+9+y^{2}-6 y+49+z^{2}+14 z=k^{2}$
$2 x^{2}+2 y^{2}+2 z^{2}-4 x-14 y+4 z+109=k^{2}$
$2 x^{2}+2 y^{2}+2 z^{2}-4 x-14 y+4 z=k^{2}-109$
$2\left(x^{2}+y^{2}+z^{2}-2 x-7 y+2 z\right)=k^{2}-109$
$\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-2 \mathrm{x}-7 \mathrm{y}+2 \mathrm{z}\right)=\left(\mathrm{k}^{2}-109\right) / 2$
Hence, the required equation is $\left(x^{2}+y^{2}+z^{2}-2 x-7 y+2 z\right)=\left(k^{2}-109\right) / 2$.

