EXERCISE 14.5

1. Show that the statement
p : "If x is a real number such that $x^{3}+4 x=0$, then x is 0 " is true by
(i) direct method
(ii) method of contradiction
(iii) method of contrapositive

Solution:

Let p : 'If x is a real number such that $\mathrm{x}^{3}+4 \mathrm{x}=0$, then x is 0 '
$\mathrm{q}: \mathrm{x}$ is a real number such that $\mathrm{x}^{3}+4 \mathrm{x}=0$
r : x is 0
(i) We assume that q is true to show that statement p is true and then show that r is true.

Therefore, let statement q be true
Hence, $x^{3}+4 x=0$
$x\left(x^{2}+4\right)=0$
$x=0$ or $x^{2}+4=0$

Since x is real, it is 0 .
So, statement r is true.
Hence, the given statement is true.
(ii) By contradiction, to show statement p to be true, we assume that p is not true.

Let x be a real number such that $x^{3}+4 x=0$ and let $x \neq 0$
Hence, $x^{3}+4 x=0$
$x\left(x^{2}+4\right)=0$
$x=0$ or $x^{2}+4=0$
$x=0$ or $x^{2}=-4$
However, x is real. Hence, $\mathrm{x}=0$, which is a contradiction since we have assumed that $\mathrm{x} \neq 0$.
Therefore, the given statement p is true.
(iii) By the contrapositive method, to prove statement p to be true, we assume that r is false and prove that q must be false.
$\sim r: x \neq 0$
Clearly, it can be seen that
$\left(x^{2}+4\right)$ will always be positive
$\mathrm{x} \neq 0$ implies that the product of any positive real number with x is not zero.
Now, consider the product of x with $\left(x^{2}+4\right)$
$\therefore x\left(x^{2}+4\right) \neq 0$
$x^{3}+4 x \neq 0$
This shows that statement q is not true.
Hence, it proved that
$\sim r \Rightarrow \sim q$
Hence, the given statement p is true.
2. Show that the statement "For any real numbers a and $b, a^{2}=b^{2}$ implies that $a=b$ " is not true by giving a counter-example.

Solution:

The given statement can be written in the form of 'if then' is given below:
If a and b are real numbers such that $a^{2}=b^{2}$, then $a=b$
Let p : a and b are real numbers such that $\mathrm{a}^{2}=\mathrm{b}^{2}$
$\mathrm{q}: \mathrm{a}=\mathrm{b}$
The given statement has to be proved false. To show this, two real numbers, a and b, with $a^{2}=b^{2}$, are required such that $\mathrm{a} \neq \mathrm{b}$.

Let us consider $\mathrm{a}=1$ and $\mathrm{b}=-1$
$\mathrm{a}^{2}=(1)^{2}$
$=1$ and
$b^{2}=(-1)^{2}$
$=1$

Hence, $a^{2}=b^{2}$

However, $\mathrm{a} \neq \mathrm{b}$
Therefore, it can be concluded that the given statement is false.
3. Show that the following statement is true by the method of contrapositive.
p: If x is an integer and x^{2} is even, then x is also even.

Solution:

Let p : If x is an integer and x^{2} is even, then x is also even
Let $\mathrm{q}: \mathrm{x}$ be an integer and x^{2} be even
$r: x$ is even
By the contrapositive method, to prove that p is true, we assume that r is false and prove that q is also false
Let x is not even
To prove that q is false, it has to be proved that x is not an integer or x^{2} is not even.
x is not even indicates that X^{2} is also not even.
Hence, statement q is false.
Therefore, the given statement p is true.
4. By giving a counter example, show that the following statements are not true.
(i) p : If all the angles of a triangle are equal, then the triangle is an obtuse angled triangle.
(ii) q : The equation $x^{2}-1=0$ does not have a root lying between 0 and 2 .

Solution:

(i) Let q: All the angles of a triangle are equal
r : The triangle is an obtuse angled triangle
The given statement p has to be proved false.
To show this, the required angles of a triangle should not be an obtuse angle.
We know that sum of all the angles of a triangle is 180°. Therefore, if all three angles are equal, then each angle measures 60°, which is not obtuse.

In an equilateral triangle, all angles are equal. However, the triangle is not an obtuse-angled triangle.
Hence, it can be concluded that the given statement p is false.
(ii) The given statement is
q : The equation $x^{2}-1=0$ does not have a root lying between 0 and 2.
This statement has to be proven false
To show this, let us consider
$\mathrm{X}^{2}-1=0$
$x^{2}=1$
$\mathrm{x}= \pm 1$
One root of the equation $x^{2}-1=0$, i.e. the root $x=1$, lies between 0 and 2
Therefore, the given statement is false.
5. Which of the following statements are true and which are false? In each case, give a valid reason for saying so.
(i) p : Each radius of a circle is a chord of the circle.
(ii) q : The centre of a circle bisects each chord of the circle.
(iii) r : Circle is a particular case of an ellipse.
(iv) s : If x and y are integers such that $x>y$, then $-x<-y$.
(v) $t: \sqrt{ } 11$ is a rational number.

Solution:

(i) The given statement p is false.

As per the definition of a chord, it should intersect the circle at two distinct points.
(ii) The given statement q is false.

The centre will not bisect that chord which is not the diameter of the circle.
In other words, the centre of a circle only bisects the diameter, which is the chord of the circle.
(iii) The equation of an ellipse is,
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
If we put $\mathrm{a}=\mathrm{b}=1$, then, we get
$x^{2}+y^{2}=1$, which is an equation of a circle
Hence, a circle is a particular case of an ellipse.
Therefore, statement r is true.
(iv) $\mathrm{x}>\mathrm{y}$

By the rule of inequality
$-x<-y$
Hence, the given statement s is true.
(v) 11 is a prime number

We know that the square root of any prime number is an irrational number.
Therefore $\sqrt{ } 11$ is an irrational number.
Hence, the given statement t is false.

