EXERCISE 15.1

Find the mean deviation about the mean for the data in Exercises 1 and 2.

1. $4,7,8,9,10,12,13,17$

Solution:-

First, we have to find $(\overline{\mathrm{x}})$ of the given data.
$\overline{\mathrm{x}}=\frac{1}{8} \sum_{\mathrm{i}=1}^{8} \mathrm{x}_{\mathrm{i}}=\frac{80}{8}=10$
So, the respective values of the deviations from mean,
i.e., $x_{i}-\bar{x}$ are, $10-4=6,10-7=3,10-8=2,10-9=1,10-10=0$,
$10-12=-2,10-13=-3,10-17=-7$
$6,3,2,1,0,-2,-3,-7$
Now, absolute values of the deviations,
$6,3,2,1,0,2,3,7$
$\therefore \sum_{\mathrm{i}=1}^{8}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=24$
$\mathrm{MD}=$ sum of deviations/ number of observations
$=24 / 8$
$=3$
So, the mean deviation for the given data is 3 .
2. $38,70,48,40,42,55,63,46,54,44$

Solution:-

First, we have to find $(\overline{\mathrm{x}})$ of the given data.
$\bar{x}=\frac{1}{10} \sum_{i=1}^{10} x_{i}=\frac{500}{10}=50$

So, the respective values of the deviations from mean,
i.e., $x_{i}-\bar{x}$ are, $50-38=-12,50-70=-20,50-48=2,50-40=10,50-42=8$,
$50-55=-5,50-63=-13,50-46=4,50-54=-4,50-44=6$
$-12,20,-2,-10,-8,5,13,-4,4,-6$
Now, absolute values of the deviations,
$12,20,2,10,8,5,13,4,4,6$
$\therefore \sum_{\mathrm{i}=1}^{10}\left|\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right|=84$
$\mathrm{MD}=$ sum of deviations/ number of observations
$=84 / 10$
$=8.4$

So, the mean deviation for the given data is 8.4.
Find the mean deviation about the median for the data in Exercises 3 and 4.
3. $13,17,16,14,11,13,10,16,11,18,12,17$

Solution:-
First, we have to arrange the given observations into ascending order.
$10,11,11,12,13,13,14,16,16,17,17,18$.
The number of observations is 12 .
Then,
Median $=\left((12 / 2)^{\mathrm{th}}\right.$ observation $+((12 / 2)+1)^{\text {th }}$ observation $) / 2$
$(12 / 2)^{\text {th }}$ observation $=6^{\text {th }}=13$
$(12 / 2)+1)^{\mathrm{th}}$ observation $=6+1$
$=7^{\text {th }}=14$

Median $=(13+14) / 2$
$=27 / 2$
$=13.5$
So, the absolute values of the respective deviations from the median, i.e., $\left|\mathrm{X}_{\mathrm{i}}-\mathrm{M}\right|$ are
$3.5,2.5,2.5,1.5,0.5,0.5,0.5,2.5,2.5,3.5,3.5,4.5$
$\therefore \sum_{\mathrm{i}=1}^{12}\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|=28$

Mean Deviation
M.D. $(M)=\frac{1}{12} \sum_{i=1}^{12}\left|x_{i}-M\right|$
$=(1 / 12) \times 28$
$=2.33$

So, the mean deviation about the median for the given data is 2.33 .
4. 36, 72, 46, 42, 60, 45, 53, 46, 51, 49

Solution:-
First, we have to arrange the given observations into ascending order.
$36,42,45,46,46,49,51,53,60,72$.
The number of observations is 10 .
Then,
Median $=\left((10 / 2)^{\mathrm{th}}\right.$ observation $+((10 / 2)+1)^{\mathrm{th}}$ observation $) / 2$
$(10 / 2)^{\text {th }}$ observation $=5^{\text {th }}=46$
$(10 / 2)+1)^{\mathrm{th}}$ observation $=5+1$
$=6^{\text {th }}=49$
Median $=(46+49) / 2$
$=95$
$=47.5$
So, the absolute values of the respective deviations from the median, i.e., $\left|\mathrm{X}_{\mathrm{i}}-\mathrm{M}\right|$ are
$11.5,5.5,2.5,1.5,1.5,1.5,3.5,5.5,12.5,24.5$

$$
\therefore \sum_{\mathrm{i}=1}^{10}\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|=70
$$

Mean Deviation
M.D. $(M)=\frac{1}{10} \sum_{i=1}^{10}\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|$
$=(1 / 10) \times 70$
$=7$

So, the mean deviation about the median for the given data is 7 .
Find the mean deviation about the mean for the data in Exercises 5 and 6.
5.

x_{i}	5	10	15	20	25
f_{i}	7	4	6	3	5

Solution:-
Let us make the table of the given data and append other columns after calculations.

$\mathbf{X}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i} \mathbf{x}_{\mathbf{i}}}$	$\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$	$\mathbf{f}_{\mathbf{i}}\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$
5	7	35	9	63
10	4	40	4	16
15	6	90	1	6
20	3	60	6	18
25	5	125	11	55

The sum of calculated data,
$N=\sum_{i=1}^{5} f_{i}=25, \sum_{i=1}^{5} f_{i} x_{i}=350$
Now, we have to find (\bar{x}) by using the formula
$\Rightarrow \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{25} \times 350=14$

The absolute values of the deviations from the mean, i.e., $\left|\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{x}}\right|$, as shown in the table.
From the table, $\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}}\left|\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=158$
Therefore M.D. $(\bar{x})=\frac{1}{N} \sum_{i=1}^{5} f_{i}\left|x_{i}-\bar{x}\right|$

$$
\begin{aligned}
& =(1 / 25) \times 158 \\
& =6.32
\end{aligned}
$$

So, the mean deviation about the mean for the given data is 6.32 .
6.

x_{i}	10	30	50	70	90
f_{i}	4	24	28	16	8

Solution:-
Let us make the table of the given data and append other columns after calculations.

$\mathbf{X}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i} \mathbf{x}_{\mathbf{i}}}$	$\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$	$\mathbf{f}_{\mathbf{i}}\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$
10	4	40	40	160
30	24	720	20	480
50	28	1400	0	0

70	16	1120	20	320
90	8	720	40	320
	80	4000		1280

The sum of calculated data,
$N=\sum_{i=1}^{5} f_{i}=80, \sum_{i=1}^{5} f_{i} x_{i}=4000$
Now, we have to find (\bar{x}) by using the formula
$\Rightarrow \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{80} \times 4000=50$
The absolute values of the deviations from the mean, i.e., $\left|x_{i}-\bar{x}\right|$, as shown in the table.

From the table, $\sum_{i=1}^{5} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=1280$
Therefore M. D. $(\bar{x})=\frac{1}{N} \sum_{i=1}^{5} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|$

$$
\begin{aligned}
& =(1 / 80) \times 1280 \\
& =16
\end{aligned}
$$

So, the mean deviation about the mean for the given data is 16 .
Find the mean deviation about the median for the data in Exercises 7 and 8.
7.

x_{i}	5	7	9	10	12	15
f_{i}	8	6	2	2	2	6

Solution:-

Let us make the table of the given data and append other columns after calculations.

$\mathbf{X i}_{\text {i }}$	f_{i}	c.f.	$\left\|\mathbf{x}_{\text {i }}-\mathbf{M}\right\|$	$\mathbf{f}_{\mathbf{i}}\left\|\mathbf{x}_{\mathbf{i}}-\mathbf{M}\right\|$
5	8	8	2	16
7	6	14	0	0
9	2	16	2	4
10	2	18	3	6
12	2	20	5	10
15	6	26	8	48

Now, $\mathrm{N}=26$, which is even.
Median is the mean of the $13^{\text {th }}$ and 14^{th} observations. Both of these observations lie in the cumulative frequency of 14 , for which the corresponding observation is 7 .

Then,
Median $=\left(13^{\text {th }}\right.$ observation $+14^{\text {th }}$ observation $) / 2$
$=(7+7) / 2$
$=14 / 2$
$=7$

So, the absolute values of the respective deviations from the median, i.e., $\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|$ are shown in the table.

Therefore $\sum_{\mathrm{i}=1}^{6} \mathrm{f}_{\mathrm{i}}=26$ and $\sum_{\mathrm{i}=1}^{6} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|=84$

$$
\text { And } \begin{aligned}
\text { M.D. }(\mathrm{M}) & =\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{6} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right| \\
& =(1 / 26) \times 84 \\
& =3.23
\end{aligned}
$$

Hence, the mean deviation about the median for the given data is 3.23 .
8.

x_{i}	15	21	27	30	35
f_{i}	3	5	6	7	8

Solution:-
Let us make the table of the given data and append other columns after calculations.

$\mathbf{X}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}}$	c.f.	$\left\|\mathbf{x}_{\mathbf{i}}-\mathbf{M}\right\|$	$\mathbf{f}_{\mathbf{i}}\left\|\mathbf{x}_{\mathbf{i}}-\mathbf{M}\right\|$
15	3	3	15	45
21	5	8	9	45
27	6	14	3	18
30	7	21	0	0

Now, $\mathrm{N}=29$, which is odd.
So, $29 / 2=14.5$

The cumulative frequency greater than 14.5 is 21 , for which the corresponding observation is 30 .

Then,
Median $=\left(15^{\mathrm{th}}\right.$ observation $+16^{\mathrm{h}}$ observation $) / 2$
$=(30+30) / 2$
$=60 / 2$
$=30$
So, the absolute values of the respective deviations from the median, i.e., $\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|$ are shown in the table.
Therefore $\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}}=29$ and $\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|=148$
And

$$
\text { M.D. } \begin{aligned}
(M) & =\frac{1}{N} \sum_{i=1}^{6} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right| \\
& =(1 / 29) \times 148 \\
& =5.1
\end{aligned}
$$

Hence, the mean deviation about the median for the given data is 5.1.
Find the mean deviation about the mean for the data in Exercises 9 and 10.
9.

Income per day in ₹	$0-$ 100	$100-$ 200	$200-$ 300	$300-$ 400	$400-$ 500	$500-$ 600	$600-$ 700	$700-$ 800
Number of persons	4	8	9	10	7	5	4	3

Solution:-

Let us make the table of the given data and append other columns after calculations.

Income per day in $\boldsymbol{₹}$	Number of persons $\mathbf{f}_{\mathbf{i}}$	Midpoints	$\mathbf{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$	$\mid \mathbf{x}_{i}-$ $\overline{\mathbf{x}} \mid$	$\mathbf{f}_{\mathbf{i}} \mid \mathbf{x}_{i}-$ $\overline{\mathbf{x}} \mid$
$0-100$	4	50	200	308	1232
$100-200$	8	150	1200	208	1664
$200-300$	9	250	2250	108	972

$300-400$	10	350	3500	8	80
$400-500$	7	450	3150	92	644
$500-600$	5	550	2750	192	960
$600-700$	4	650	2600	292	1160
$700-800$	3	750	2250	392	1176
	50		17900		7896

The sum of calculated data,
$N=\sum_{i=1}^{8} f_{i}=50, \sum_{i=1}^{8} f_{i} x_{i}=17900$
Now, we have to find (\bar{x}) by using the formula
$\Rightarrow \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{8} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{50} \times 17900=358$
The absolute values of the deviations from the mean, i.e., $\left|x_{i}-\bar{x}\right|$, as shown in the table.

So, $\sum_{i=1}^{8} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=7896$
And M.D. $(\bar{x})=\frac{1}{N} \sum_{i=1}^{8} f_{i}\left|x_{i}-\bar{x}\right|$

$$
\begin{aligned}
& =(1 / 50) \times 7896 \\
& =157.92
\end{aligned}
$$

Hence, the mean deviation about the mean for the given data is 157.92 .
10.

Height in cms	$95-$ 105	$105-$ 115	$115-$ 125	$125-$ 135	$135-$ 145	$145-$ 155
Number of	9	13	26	30	12	10

boys				

Solution:-

Let us make the table of the given data and append other columns after calculations.

Height in cms	Number of boys \mathbf{f}_{i}	Midpoints \mathbf{x}_{i}	$\mathbf{f}_{\mathbf{i}} \mathrm{X}_{\mathrm{i}}$	$\left\|\mathbf{x}_{\text {i }}-\overline{\mathbf{x}}\right\|$	$\mathbf{f}_{\mathbf{i}}\left\|\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right\|$
95-105	9	100	900	25.3	227.7
105-115	13	110	1430	15.3	198.9
115-125	26	120	3120	5.3	137.8
125-135	30	130	3900	4.7	141
135-145	12	140	1680	14.7	176.4
145-155	10	150	1500	24.7	247
	100		12530		1128.8

The sum of calculated data,
$\mathrm{N}=\sum_{\mathrm{i}=1}^{6} \mathrm{f}_{\mathrm{i}}=100, \sum_{\mathrm{i}=1}^{6} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=12530$
Now, we have to find ($\overline{\mathrm{x}}$) by using the formula
$\Rightarrow \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{6} \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=\frac{1}{100} \times 12530=125.3$
The absolute values of the deviations from the mean, i.e., $\left|x_{i}-\bar{x}\right|$, as shown in the table.

So $\sum_{i=1}^{6} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=1128.8$
And M.D. $(\bar{x})=\frac{1}{N} \sum_{i=1}^{6} f_{i}\left|x_{i}-\bar{x}\right|$

$$
\begin{aligned}
& =(1 / 100) \times 1128.8 \\
& =11.28
\end{aligned}
$$

Hence, the mean deviation about the mean for the given data is 11.28 .
11. Find the mean deviation about median for the following data.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Number of girls	6	8	14	16	4	2

Solution:-

Let us make the table of the given data and append other columns after calculations.

Marks	Number of girls $\mathbf{f}_{\mathbf{i}}$	Cumulative frequency (c.f.)	Mid - points $\mathbf{x}_{\mathbf{i}}$	$\mid \mathbf{x}_{\mathbf{i}}-$ Med \mid	$\mathbf{f}_{i} \mid \mathbf{x}_{i}-$ Med \mid
$0-10$	6	6	5	22.85	137.1
$10-$	8	14	15	12.85	102.8

20					
$\begin{aligned} & 20- \\ & 30 \end{aligned}$	14	28	25	2.85	39.9
$\begin{aligned} & 30- \\ & 40 \end{aligned}$	16	44	35	7.15	114.4
$\begin{aligned} & 40- \\ & 50 \end{aligned}$	4	48	45	17.15	68.6
$\begin{aligned} & 50- \\ & 60 \end{aligned}$	2	50	55	27.15	54.3
	50				517.1

The class interval containing $\mathrm{N}^{\mathrm{t}} / 2$ or 25^{th} item is 20-30.
So, 20-30 is the median class.
Then,
Median $=1+(((\mathrm{N} / 2)-\mathrm{c}) / \mathrm{f}) \times \mathrm{h}$
Where, $\mathrm{l}=20, \mathrm{c}=14, \mathrm{f}=14, \mathrm{~h}=10$ and $\mathrm{n}=50$
Median $=20+(((25-14)) / 14) \times 10$
$=20+7.85$
$=27.85$
The absolute values of the deviations from the median, i.e., $\left|x_{i}-M e d\right|$, as shown in the table.

So $\sum_{i=1}^{6} \mathrm{f}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}-$ Med. $\mid=517.1$
And M.D. (M) $\left.=\frac{1}{N} \sum_{i=1}^{6} \mathrm{f}_{\mathrm{i}} \right\rvert\, \mathrm{x}_{\mathrm{i}}-$ Med. \mid

$$
\begin{aligned}
& =(1 / 50) \times 517.1 \\
& =10.34
\end{aligned}
$$

Hence, the mean deviation about the median for the given data is 10.34 .
12. Calculate the mean deviation about median age for the age distribution of $\mathbf{1 0 0}$ persons given below.

Age (in years)	$16-$ 20	$21-$ 25	$26-$ 30	$31-$ 35	$36-$ 40	$41-$ 45	$46-$ 50	$51-$ 55
Number	5	6	12	14	26	12	16	9

[Hint: Convert the given data into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval]

Solution:-

The given data is converted into continuous frequency distribution by subtracting 0.5 from the lower limit and adding the 0.5 to the upper limit of each class intervals and append other columns after calculations.

Age	Number \mathbf{f}_{i}	Cumulative frequency (c.f.)	Midpoints \mathbf{x}_{i}	$\mid \mathbf{x}_{\text {i }}$ - Med	$\begin{aligned} & \mathbf{f}_{i} \mid \mathbf{x}_{i}- \\ & \text { Med } \end{aligned}$
$\begin{aligned} & 15.5- \\ & 20.5 \end{aligned}$	5	5	18	20	100
$\begin{aligned} & 20.5- \\ & 25.5 \end{aligned}$	6	11	23	15	90
$\begin{aligned} & 25.5- \\ & 30.5 \end{aligned}$	12	23	28	10	120
$\begin{aligned} & 30.5- \\ & 35.5 \end{aligned}$	14	37	33	5	70
$\begin{aligned} & 35.5- \\ & 40.5 \end{aligned}$	26	63	38	0	0
$\begin{aligned} & 40.5- \\ & 45.5 \end{aligned}$	12	75	43	5	60
$\begin{aligned} & 45.5- \\ & 50.5 \end{aligned}$	16	91	48	10	160
$\begin{aligned} & 50.5- \\ & 55.5 \end{aligned}$	9	100	53	15	135
	100				735

The class interval containing $\mathrm{N}^{\mathrm{m}} / 2$ or 50^{m} item is $35.5-40.5$
So, $35.5-40.5$ is the median class.

Then,
Median $=1+(((\mathrm{N} / 2)-\mathrm{c}) / \mathrm{f}) \times \mathrm{h}$
Where, $\mathrm{l}=35.5, \mathrm{c}=37, \mathrm{f}=26, \mathrm{~h}=5$ and $\mathrm{N}=100$
Median $=35.5+(((50-37)) / 26) \times 5$
$=35.5+2.5$
$=38$
The absolute values of the deviations from the median, i.e., $\left|x_{i}-M e d\right|$, as shown in the table.

So $\sum_{\mathrm{i}=1}^{8} \mathrm{f}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}-$ Med. $\mid=735$
And M.D. (M) $=\frac{1}{N} \sum_{i=1}^{6} f_{i}\left|x_{i}-M e d.\right|$
$=(1 / 100) \times 735$
$=7.35$
Hence, the mean deviation about the median for the given data is 7.35 .

