1. From the data given below state which group is more variable, A or B?

Marks	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Group A	9	17	32	33	40	10	9
Group B	10	20	30	25	43	15	7

Solution:-

For comparing the variability or dispersion of two series, we calculate the coefficient of variance for each series. The series having greater C.V. is said to be more variable than the other. The series having lesser C.V. is said to be more consistent than the other.

Co-efficient of variation (C.V.) $=(\sigma / \overline{\mathrm{x}}) \times 100$
Where, $\sigma=$ standard deviation, $\overline{\mathrm{x}}=$ mean
For Group A.

Marks	Group A \mathbf{f}_{i}	Midpoint \mathbf{X}_{i}	$\mathbf{Y}_{\mathrm{i}}=\left(\mathbf{x}_{\mathrm{i}}-\mathbf{A}\right) / \mathrm{h}$	$\left(\mathbf{Y}_{\mathbf{i}}\right)^{\mathbf{2}}$	$\mathrm{f}_{\mathbf{i}} \mathrm{y}_{\mathrm{i}}$	$\mathbf{f}_{\mathrm{i}}\left(\mathbf{y}_{\mathbf{i}}\right)^{\mathbf{2}}$
10-20	9	15	$((15-45) / 10)=-3$	$\begin{aligned} & (-3)^{2} \\ & =9 \end{aligned}$	- 27	81
20-30	17	25	$((25-45) / 10)=-2$	$\begin{aligned} & (-2)^{2} \\ & =4 \end{aligned}$	- 34	68
30-40	32	35	$((35-45) / 10)=-1$	$\begin{aligned} & (-1)^{2} \\ & =1 \end{aligned}$	- 32	32
40-50	33	45	$((45-45) / 10)=0$	$0{ }^{2}$	0	0
$50-60$	40	55	$((55-45) / 10)=1$	$\begin{aligned} & 1^{2} \\ & =1 \end{aligned}$	40	40
60-70	10	65	$((65-45) / 10)=2$	$\begin{aligned} & 2^{2} \\ & =4 \end{aligned}$	20	40

$70-80$	9	75	$((75-45) / 10)=3$	3^{2} $=9$	27	81
Total	150				-6	342

Mean, $\overline{\mathrm{x}}=\mathrm{A}+\frac{\sum_{\mathrm{i}=1}^{\mathrm{a}} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\mathrm{N}} \times \mathrm{h}$
Where $\mathrm{A}=45$,
and $y_{i}=\left(x_{i}-A\right) / h$
Here $\mathrm{h}=$ class size $=20-10$
$\mathrm{h}=10$
So, $\bar{x}=45+((-6 / 150) \times 10)$
$=45-0.4$
$=44.6$
Then, variance $\sigma^{2}=\frac{\mathrm{h}^{2}}{\mathrm{~N}^{2}}\left[\mathrm{~N} \Sigma \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}-\left(\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)^{2}\right]$

$$
\begin{aligned}
& \sigma^{2}=\left(10^{2} / 150^{2}\right)\left[150(342)-(-6)^{2}\right] \\
& =(100 / 22500)[51,300-36] \\
& =(100 / 22500) \times 51264 \\
& =227.84
\end{aligned}
$$

Hence, standard deviation $=\sigma=\sqrt{ } 227.84$
$=15.09$
\therefore C.V for group $\mathrm{A}=(\sigma / \overline{\mathrm{x}}) \times 100$
$=(15.09 / 44.6) \times 100$
$=33.83$
Now, for group B.

| Marks | Group B | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{f}_{\mathbf{i}}$ | Midpoint
 $\mathbf{X}_{\mathbf{i}}$ | $\mathbf{Y}_{\mathrm{i}}=\left(\mathbf{x}_{\mathbf{i}}-\mathbf{A}\right) / \mathbf{h}$ | $\left(\mathbf{Y}_{\mathbf{i}}\right)^{2}$ | $\mathbf{f}_{\mathbf{i}} \mathbf{y}_{\mathbf{i}}$ | $\mathbf{f}_{\mathbf{i}}\left(\mathbf{y}_{\mathbf{i}}\right)^{2}$ |

10-20	10	15	$((15-45) / 10)=-3$	$\begin{aligned} & (-3)^{2} \\ & =9 \end{aligned}$	-30	90
20-30	20	25	$((25-45) / 10)=-2$	$\begin{aligned} & (-2)^{2} \\ & =4 \end{aligned}$	-40	80
30-40	30	35	$((35-45) / 10)=-1$	$\begin{aligned} & (-1)^{2} \\ & =1 \end{aligned}$	-30	30
40-50	25	45	$((45-45) / 10)=0$	$0{ }^{2}$	0	0
50-60	43	55	$((55-45) / 10)=1$	$\begin{aligned} & 1^{2} \\ & =1 \end{aligned}$	43	43
60-70	15	65	$((65-45) / 10)=2$	$\begin{aligned} & 2^{2} \\ & =4 \end{aligned}$	30	60
$70-80$	7	75	$((75-45) / 10)=3$	$\begin{aligned} & 3^{2} \\ & =9 \end{aligned}$	21	63
Total	150				-6	366

Mean, $\overline{\mathrm{x}}=\mathrm{A}+\frac{\sum_{\mathrm{i}=1}^{\mathrm{a}} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\mathrm{N}} \times \mathrm{h}$
Where $\mathrm{A}=45$,
$h=10$
So, $\bar{x}=45+((-6 / 150) \times 10)$
$=45-0.4$
$=44.6$
Then, variance $\sigma^{2}=\frac{h^{2}}{N^{2}}\left[N \Sigma f_{i} y_{i}^{2}-\left(\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)^{2}\right]$
$\sigma^{2}=\left(10^{2} / 150^{2}\right)\left[150(366)-(-6)^{2}\right]$
$=(100 / 22500)[54,900-36]$
$=(100 / 22500) \times 54,864$
$=243.84$
Hence, standard deviation $=\sigma=\sqrt{ } 243.84$
$=15.61$
\therefore C.V for group $B=(\sigma / \bar{x}) \times 100$
$=(15.61 / 44.6) \times 100$
$=35$

By comparing the C.V. of group A and group B.
C.V of Group B > C.V. of Group A

So, Group B is more variable.
2. From the prices of shares X and Y below, find out which is more stable in value.

X	35	54	52	53	56	58	52	50	51	49
Y	108	107	105	105	106	107	104	103	104	101

Solution:-

From the given data,
Let us make the table of the given data and append other columns after calculations.

$\mathbf{X}\left(\mathbf{x}_{\mathrm{i}}\right)$	$\mathbf{Y}\left(\mathbf{y}_{\mathbf{i}}\right)$	$\mathbf{X i}^{2}$	$\mathbf{Y}_{\text {i }}{ }^{\text {2 }}$
35	108	1225	11664
54	107	2916	11449
52	105	2704	11025
53	105	2809	11025
56	106	8136	11236
58	107	3364	11449

52	104	2704	10816
50	103	2500	10609
51	104	101	2601
49	1050		10816
Total $=510$			

We have to calculate Mean for x ,
Mean $\bar{x}=\sum \mathrm{x}_{\mathrm{i}} / \mathrm{n}$
Where, $\mathrm{n}=$ number of terms
$=510 / 10$
$=51$

Then, Variance for $\mathrm{x}=\frac{1}{\mathrm{n}^{2}}\left[\mathrm{~N} \sum \mathrm{x}_{\mathrm{i}}{ }^{2}-\left(\sum \mathrm{x}_{\mathrm{i}}\right)^{2}\right]$
$=\left(1 / 10^{2}\right)\left[(10 \times 26360)-510^{2}\right]$
$=(1 / 100)(263600-260100)$
$=3500 / 100$
$=35$

WKT Standard deviation $=\sqrt{\text { variance }}$
$=\sqrt{ } 35$
$=5.91$

So, co-efficient of variation $=(\sigma / \bar{x}) \times 100$
$=(5.91 / 51) \times 100$
$=11.58$

Now, we have to calculate Mean for y ,

Mean $\bar{y}=\sum y_{i} / n$
Where, $\mathrm{n}=$ number of terms
$=1050 / 10$
$=105$
Then, Variance for $\mathrm{y}=\frac{1}{\mathrm{n}^{2}}\left[\mathrm{~N} \sum \mathrm{y}_{\mathrm{i}}{ }^{2}-\left(\sum \mathrm{y}_{\mathrm{i}}\right)^{2}\right]$
$=\left(1 / 10^{2}\right)\left[(10 \times 110290)-1050^{2}\right]$
$=(1 / 100)(1102900-1102500)$
$=400 / 100$
$=4$
WKT Standard deviation $=\sqrt{ }$ variance
$=\sqrt{ } 4$
$=2$
So, co-efficient of variation $=(\sigma / \bar{x}) \times 100$
$=(2 / 105) \times 100$
$=1.904$
By comparing C.V. of X and Y ,
C.V of X > C.V. of Y

So, Y is more stable than X .
3. An analysis of monthly wages paid to workers in two firms, \mathbf{A} and \mathbf{B}, belonging to the same industry, gives the following results:

	Firm A	Firm B
No. of wages earners	586	648
Mean of monthly wages	Rs 5253	Rs 5253

Variance of the distribution of wages	100	121

(i) Which firm, A or B, pays a larger amount as monthly wages?
(ii) Which firm, A or B, shows greater variability in individual wages?

Solution:-

(i) From the given table,

Mean monthly wages of firm A = Rs 5253
and Number of wage earners $=586$
Then,
Total amount paid $=586 \times 5253$
$=$ Rs 3078258

Mean monthly wages of firm $B=$ Rs 5253

Number of wage earners $=648$

Then,

Total amount paid $=648 \times 5253$
$=$ Rs 34,03,944
So, firm B pays larger amount as monthly wages.
(ii) Variance of firm $\mathrm{A}=100$

We know that, standard deviation $(\sigma)=\sqrt{ } 100$
$=10$

Variance of firm B $=121$

Then,
Standard deviation $(\sigma)=\sqrt{ }(121)$
$=11$

Hence, the standard deviation is more in case of Firm B. That means, in firm B, there is greater variability in individual wages.
4. The following is the record of goals scored by team \mathbf{A} in a football session:

No. of goals scored	0	1	2	3	4
No. of matches	1	9	7	5	3

For team B, the mean number of goals scored per match was 2, with a standard deviation 1.25 goals. Find which team may be considered more consistent?

Solution:-

From the given data,

Let us make the table of the given data and append other columns after calculations.

Number of goals scored x_{i}	Number of matches \mathbf{f}_{i}	$\mathbf{f}_{\mathbf{i}} \mathbf{X}_{\mathbf{i}}$	$\mathbf{X i}^{2}$	$\mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}{ }^{2}$
0	1	0	0	0
1	9	9	1	9
2	7	14	4	28
3	5	15	9	45
4	3	12	16	48
Total	25	50		130

First we have to calculate Mean for Team A,
Mean $=\frac{\sum f_{i} x_{i}}{\sum f_{\mathrm{i}}}=\frac{50}{25}=2$
Then,

$$
\begin{aligned}
\text { Variance } & =\frac{1}{\mathrm{~N}^{2}}\left[\mathrm{~N} \sum \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}{ }^{2}-\left(\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)^{2}\right] \\
& =\frac{1}{25^{2}}[25 \times 130-2500]=\frac{750}{625}=1.2
\end{aligned}
$$

We know that, Standard deviation $\sigma=$ Vvariance $=\mathrm{V} 1.2=1.09$
Hence co-efficient of variation of team A,
C. $\mathrm{V}_{\cdot \mathrm{A}}=\frac{\sigma}{\overline{\mathrm{x}}} \times 100=\frac{1.09}{2} \times 100=54.5$

For team B

Given, $\bar{x}=2$
Standard deviation $\sigma=1.25$
So, co-efficient of variation of team B,
$\Rightarrow C . V_{B}=\frac{1.25}{2} \times 100=62.5$
C.V. of firm B is greater.
\therefore Team A is more consistent.
5. The sum and sum of squares corresponding to length x (in cm) and weight y (in gm) of 50 plant products are given below:

$$
\sum_{i=1}^{50} x_{i}=212, \quad \sum_{i=1}^{50} x_{i}^{2}=902.8, \quad \sum_{i=1}^{50} y_{i}=261, \sum_{i=1}^{50} y_{i}^{2}=1457.6
$$

Which is more varying, the length or weight?

Solution:-

First, we have to calculate Mean for Length x.

$$
\text { Mean }=\overline{\mathrm{x}}=\frac{\sum \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}=\frac{212}{50}=4.24
$$

Then,

$$
\begin{aligned}
\text { Variance } & =\frac{1}{\mathrm{~N}^{2}}\left[\mathrm{~N} \sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}-\left(\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)^{2}\right] \\
& =\left(1 / 50^{2}\right)\left[(50 \times 902.8)-212^{2}\right] \\
& =(1 / 2500)(45140-44944) \\
& =196 / 2500 \\
& =0.0784
\end{aligned}
$$

We know that, Standard deviation $\sigma=$ Vvariance

$$
\begin{aligned}
& =\mathrm{V} 0.0784 \\
& =0.28
\end{aligned}
$$

Hence co-efficient of variation of team A,
C. $V_{\cdot x}=\frac{\sigma}{\overline{\mathrm{x}}} \times 100=\frac{0.28}{4.24} \times 100=6.603$

Now we have to calculate mean of Weight y
$\bar{y}=\sum y_{i} / n$

$$
\begin{aligned}
& =261 / 50 \\
& =5.22
\end{aligned}
$$

Then,

$$
\begin{aligned}
\text { Variance } & =\left(1 / N^{2}\right)\left[\left(N \Sigma f_{i} y_{i}^{2}\right)-\left(\sum f_{i} y_{i}\right)_{2}^{2}\right] \\
& =\left(1 / 50^{2}\right)\left[(50 \times 1457.6)-261^{2}\right] \\
& =(1 / 2500)(72880-68121) \\
& =4759 / 2500 \\
& =1.9036
\end{aligned}
$$

We know that, Standard deviation $\sigma=$ Vvariance

$$
\begin{aligned}
& =v 1.9036 \\
& =1.37
\end{aligned}
$$

So, co-efficient of variation of team B,
C. $V_{\cdot} \cdot \frac{\sigma}{\bar{X}} \times 100=\frac{1.37}{5.22} \times 100=26.24$

Since C.V. of firm weight y is greater
\therefore Weight is more varying.

