1. Solve:
(i) $2-(3 / 5)$

## Solution:-

For subtraction of two unlike fractions, first change them to like fractions.
LCM of $1,5=5$
Now, let us change each of the given fractions into an equivalent fraction having 5 as the denominator.
$=[(2 / 1) \times(5 / 5)]=(10 / 5)$
$=[(3 / 5) \times(1 / 1)]=(3 / 5)$
Now,
$=(10 / 5)-(3 / 5)$
$=[(10-3) / 5]$
$=(7 / 5)$
(ii) 4 + (7/8)

## Solution:-

For addition of two unlike fractions, first change them to like fractions.
LCM of $1,8=8$
Now, let us change each of the given fractions into an equivalent fraction having 8 as the denominator.
$=[(4 / 1) \times(8 / 8)]=(32 / 8)$
$=[(7 / 8) \times(1 / 1)]=(7 / 8)$
Now,
$=(32 / 8)+(7 / 8)$
$=[(32+7) / 8]$
$=(39 / 8)$
$=4 \frac{7}{8}$
(iii) $(3 / 5)+(2 / 7)$

## Solution:-

For addition of two unlike fractions, first change them to like fractions.
LCM of 5, $7=35$
Now, let us change each of the given fractions into an equivalent fraction having 35 as the denominator.
$=[(3 / 5) \times(7 / 7)]=(21 / 35)$
$=[(2 / 7) \times(5 / 5)]=(10 / 35)$
Now,
$=(21 / 35)+(10 / 35)$
$=[(21+10) / 35]$
$=(31 / 35)$
(iv) $(9 / 11)-(4 / 15)$

## Solution:-

For subtraction of two unlike fractions, first change them to like fractions.
LCM of $11,15=165$
Now, let us change each of the given fractions into an equivalent fraction having 165 as the denominator.
$=[(9 / 11) \times(15 / 15)]=(135 / 165)$
$=[(4 / 15) \times(11 / 11)]=(44 / 165)$
Now,
$=(135 / 165)-(44 / 165)$
$=[(135-44) / 165]$
$=(91 / 165)$
(v) $(7 / 10)+(2 / 5)+(3 / 2)$

## Solution:-

For addition of two unlike fractions, first change them to like fractions.
LCM of 10, 5, $2=10$
Now, let us change each of the given fractions into an equivalent fraction having 35 as the denominator.
$=[(7 / 10) \times(1 / 1)]=(7 / 10)$
$=[(2 / 5) \times(2 / 2)]=(4 / 10)$
$=[(3 / 2) \times(5 / 5)]=(15 / 10)$
Now,
$=(7 / 10)+(4 / 10)+(15 / 10)$
$=[(7+4+15) / 10]$
$=(26 / 10)$
$=(13 / 5)$
$=2 \frac{3}{5}$
(vi) $2 \frac{2}{3}+3 \frac{1}{2}$

Solution:-
First convert mixed fraction into improper fraction,
$=2 \frac{2}{3}=8 / 3$
$=31 / 2=7 / 2$
For addition of two unlike fractions, first change them to like fractions.
LCM of 3, $2=6$
Now, let us change each of the given fractions into an equivalent fraction having 6 as the denominator.
$=[(8 / 3) \times(2 / 2)]=(16 / 6)$
$=[(7 / 2) \times(3 / 3)]=(21 / 6)$
Now,
$=(16 / 6)+(21 / 6)$
$=[(16+21) / 6]$
$=(37 / 6)$
$=6 \frac{1}{6}$
(vii)

812-358
Solution:-
First convert mixed fraction into improper fraction,
$=81 / 2=17 / 2$
$=3 \frac{5}{8}=29 / 8$
For subtraction of two unlike fractions, first change them to like fractions.
LCM of 2, $8=8$
Now, let us change each of the given fractions into an equivalent fraction having 35 as the denominator.
$=[(17 / 2) \times(4 / 4)]=(68 / 8)$
$=[(29 / 8) \times(1 / 1)]=(29 / 8)$
Now,
$=(68 / 8)-(29 / 8)$
$=[(68-29) / 8]$
$=(39 / 8)$
$=4 \frac{7}{8}$
2. Arrange the following in descending order:
(i) $2 / 9,2 / 3,8 / 21$

## Solution:-

LCM of 9, 3, $21=63$
Now, let us change each of the given fractions into an equivalent fraction having 63 as the denominator.
$[(2 / 9) \times(7 / 7)]=(14 / 63)[(2 / 3) \times(21 / 21)]=(42 / 63)[(8 / 21) \times(3 / 3)]=(24 / 63)$
Clearly,
$(42 / 63)>(24 / 63)>(14 / 63)$
Hence,

$$
(2 / 3)>(8 / 21)>(2 / 9)
$$

Hence, the given fractions in descending order are (2/3), (8/21), (2/9)
(ii) $1 / 5,3 / 7,7 / 10$

## Solution:-

LCM of 5, 7, $10=70$
Now, let us change each of the given fractions into an equivalent fraction having 70 as the denominator.
$[(1 / 5) \times(14 / 14)]=(14 / 70)[(3 / 7) \times(10 / 10)]=(30 / 70)[(7 / 10) \times(7 / 7)]=(49 / 70)$
Clearly,
$(49 / 70)>(30 / 70)>(14 / 70)$
Hence,
$(7 / 10)>(3 / 7)>(1 / 5)$
Hence, the given fractions in descending order are (7/10), (3/7), (1/5)
3. In a "magic square", the sum of the numbers in each row, in each column and along the diagonals is the same. Is this a magic square?

| $4 / 11$ | $9 / 11$ | $2 / 11$ |
| :--- | :--- | :--- |
| $3 / 11$ | $5 / 11$ | $7 / 11$ |
| $8 / 11$ | $1 / 11$ | $6 / 11$ |

## Solution:-

Sum along the first row $=(4 / 11)+(9 / 11)+(2 / 11)=(15 / 11)$
Sum along the second row $=(3 / 11)+(5 / 11)+(7 / 11)=(15 / 11)$
Sum along the third row $=(8 / 11)+(1 / 11)+(6 / 11)=(15 / 11)$
Sum along the first column $=(4 / 11)+(3 / 11)+(8 / 11)=(15 / 11)$

Sum along the second column $=(9 / 11)+(5 / 11)+(1 / 11)=(15 / 11)$
Sum along the third column $=(2 / 11)+(7 / 11)+(6 / 11)=(15 / 11)$
Sum along the first diagonal $=(4 / 11)+(5 / 11)+(6 / 11)=(15 / 11)$
Sum along the second diagonal $=(2 / 11)+(5 / 11)+(8 / 11)=(15 / 11)$
Yes. The sum of the numbers in each row, in each column and along the diagonals is the same, so it is a magic square.
4. A rectangular sheet of paper is $12 \frac{1}{2} \mathrm{~cm}$ long and $10 \frac{2}{3} \mathrm{~cm}$ wide. Find its perimeter.

## Solution:-

From the question, it is given that,
Length $=121 / 2 \mathrm{~cm}=25 / 2 \mathrm{~cm}$
Breadth =
$10 \frac{2}{3} \mathrm{~cm}=32 / 3 \mathrm{~cm}$
We know that,
Perimeter of the rectangle $=2 \times$ (length + breadth $)$
$=2 \times[(25 / 2)+(32 / 3)]$
$=2 \times\{[(25 \times 3)+(32 \times 2)] / 6\}$
$=2 \times[(75+64) / 6]$
$=2 \times[139 / 6]$
$=139 / 3 \mathrm{~cm}$
Hence, the perimeter of the sheet of paper is
$46 \frac{1}{3} \mathrm{~cm}$
5. Find the perimeters of (i) triangle ABE (ii) the rectangle BCDE in this figure. Whose perimeter is greater?


## Solution:-

From the fig,
$A B=(5 / 2) \mathrm{cm}$
$A E=3 \frac{3}{5}=18 / 5 \mathrm{~cm}$
$B E=2 \frac{3}{4}=11 / 4 \mathrm{~cm}$
$E D=7 / 6 \mathrm{~cm}$
(i) We know that,

Perimeter of the triangle $=$ Sum of all sides
Then,
Perimeter of triangle $A B E=A B+B E+E A$
$=(5 / 2)+(11 / 4)+(18 / 5)$
The LCM of $2,4,5=20$
Now, let us change each of the given fractions into an equivalent fraction having 20 as the denominator.
$=\{[(5 / 2) \times(10 / 10)]+[(11 / 4) \times(5 / 5)]+[(18 / 5) \times(4 / 4)]\}$
$=(50 / 20)+(55 / 20)+(72 / 20)$
$=(50+55+72) / 20$
= 177/20
$=8 \frac{17}{20} \mathrm{~cm}$
(ii) Now, we have to find the perimeter of the rectangle,

We know that,
Perimeter of the rectangle $=2 \times$ (length + breadth $)$
Then,
Perimeter of rectangle $B C D E=2 \times(B E+E D)$
$=2 \times[(11 / 4)+(7 / 6)]$
The LCM of 4, $6=12$
Now, let us change each of the given fractions into an equivalent fraction having 20 as the denominator
$=2 \times\{[(11 / 4) \times(3 / 3)]+[(7 / 6) \times(2 / 2)]\}$
$=2 \times[(33 / 12)+(14 / 12)]$
$=2 \times[(33+14) / 12]$
$=2 \times(47 / 12)$
$=47 / 6$
$=7 \frac{5}{6}$
Finally, we have to find which one is having a greater perimeter.
Perimeter of triangle ABE $=(177 / 20)$
Perimeter of rectangle BCDE $=(47 / 6)$
The two perimeters are in the form of unlike fractions.
Changing perimeters into like fractions we have,
$(177 / 20)=(177 / 20) \times(3 / 3)=531 / 60$
$(43 / 6)=(43 / 6) \times(10 / 10)=430 / 60$
Clearly, $(531 / 60)>(430 / 60)$
Hence, $(177 / 20)>(43 / 6)$
$\therefore$ Perimeter of Triangle ABE > Perimeter of Rectangle (BCDE)
6. Salil wants to put a picture in a frame. The picture is $7 \frac{3}{5} \mathrm{~cm}$ wide. To fit in the frame the picture cannot be more than $7 \frac{3}{10} \mathrm{~cm}$ wide. How much should the picture be trimmed?

## Solution:-

From the question, it is given that,
Picture having a width of $=7 \frac{3}{5}=38 / 5 \mathrm{~cm}$
Frame having a width of $=7 \frac{3}{10}=73 / 10 \mathrm{~cm}$
$\therefore$ The picture should be trimmed by $=[(38 / 5)-(73 / 10)]$
The LCM of 5, $10=10$
Now, let us change each of the given fractions into an equivalent fraction having 10 as the denominator.
$=[(38 / 5) \times(2 / 2)]-[(73 / 10) \times(1 / 1)]$
$=(76 / 10)-(73 / 10)$
$=(76-73) / 10$
$=3 / 10 \mathrm{~cm}$
Thus, the picture should be trimmed by $(3 / 10) \mathrm{cm}$
7. Ritu ate (3/5) part of an apple and the remaining apple was eaten by her brother Somu. What part of the apple did Somu eat? Who had the larger share? By how much?

## Solution:-

From the question, it is given that,
Part of the apple eaten by Ritu is $=(3 / 5)$
Part of the apple eaten by Somu is = 1 - Part of the apple eaten by Ritu
$=1-(3 / 5)$
The LCM of $1,5=5$
Now, let us change each of the given fractions into an equivalent fraction having 10 as the denominator.
$=[(1 / 1) \times(5 / 5)]-[(3 / 5) \times(1 / 1)]$
$=(5 / 5)-(3 / 5)$
$=(5-3) / 5$
$=2 / 5$
$\therefore$ Part of the apple eaten by Somu is $(2 / 5)$
So, $(3 / 5)>(2 / 5)$ hence, Ritu ate larger size of the apple.
Now, the difference between the 32 shares $=(3 / 5)-(2 / 5)$
$=(3-2) / 5$
$=1 / 5$
Thus, Ritu's share is larger than the share of Somu by (1/5)
8. Michael finished colouring a picture in (7/12) hour. Vaibhav finished colouring the same picture in (3/4) hour. Who worked longer? By what fraction was it longer?

## Solution:-

From the question, it is given that,
Time taken by the Michael to colour the picture is $=(7 / 12)$
Time taken by the Vaibhav to colour the picture is $=(3 / 4)$
The LCM of 12, $4=12$
Now, let us change each of the given fraction into an equivalent fraction having 12 as the denominator.
$(7 / 12)=(7 / 12) \times(1 / 1)=7 / 12$
$(3 / 4)=(3 / 4) \times(3 / 3)=9 / 12$
Clearly, $(7 / 12)<(9 / 12)$
Hence, $(7 / 12)<(3 / 4)$
Thus, Vaibhav worked for longer time.
So, Vaibhav worked longer time by $=(3 / 4)-(7 / 12)$
$=(9 / 12)-(7 / 12)$
$=(9-7) / 12$
$=(2 / 12)$
$=(1 / 6)$ of an hour.

