EXERCISE 3.2

1. The scores on the Mathematics test (out of 25) of 15 students are as follows:
$19,25,23,20,9,20,15,10,5,16,25,20,24,12,20$
Find the mode and median of this data. Are they the same?

Solution:-

Arranging the given scores in ascending order, we get
$5,9,10,12,15,16,19,20,20,20,20,23,24,25,25$
Mode
Mode is the value of the variable which occurs most frequently.
Clearly, 20 occurs a maximum number of times.
Hence, the mode of the given sores is 20 .
Median
The value of the middle-most observation is called the median of the data.
Here, $n=15$, which is odd.
Where n is the number of students.
\therefore median $=$ value of $1 / 2(n+1)^{\mathrm{th}}$ observation
$=1 / 2(15+1)$
$=1 / 2(16)$
$=16 / 2$
$=8$
Then, the value of the $8^{\text {th }}$ term $=20$
Hence, the median is 20 .
Yes, both values are the same.
2. The runs scored in a cricket match by 11 players are as follows:
$6,15,120,50,100,80,10,15,8,10,15$
Find the mean, mode and median of this data. Are the three same?

Solution:-

Arranging the runs scored in a cricket match by 11 players in ascending order, we get
$6,8,10,10,15,15,15,50,80,100,120$
Mean
Mean of the given data $=$ Sum of all observations $/$ Total number of observations
$=(6+8+10+10+15+15+15+50+80+100+120) / 11$
= 429/11
$=39$
Mode,
Mode is the value of the variable which occurs most frequently.
Clearly, 15 occurs a maximum number of times.
Hence, the mode of the given sores is 15 .
Median,
The value of the middle-most observation is called the median of the data.
Here $\mathrm{n}=11$, which is odd.
Where n is the number of players.
\therefore median $=$ value of $1 / 2(n+1)^{\text {th }}$ observation.
$=1 / 2(11+1)$
$=1 / 2(12)$
$=12 / 2$
$=6$
Then, the value of the $6^{\text {th }}$ term $=15$

Hence, the median is 15 .

No, these three are not the same.
3. The weights (in kg.) of $\mathbf{1 5}$ students of a class are:
$38,42,35,37,45,50,32,43,43,40,36,38,43,38,47$
(i) Find the mode and median of this data.
(ii) Is there more than one mode?

Solution:-

Arranging the given weights of 15 students of a class in ascending order, we get
$32,35,36,37,38,38,38,40,42,43,43,43,45,47,50$
(i) Mode and Median

Mode
Mode is the value of the variable which occurs most frequently.
Clearly, 38 and 43 both occur 3 times.
Hence, the modes of the given weights are 38 and 43.
Median
The value of the middle-most observation is called the median of the data.
Here, $n=15$, which is odd.
Where n is the number of students.
\therefore median $=$ value of $1 / 2(n+1)^{\mathrm{th}}$ observation
$=1 / 2(15+1)$
$=1 / 2(16)$
$=16 / 2$
$=8$
Then, the value of the $8^{\text {th }}$ term $=40$
Hence, the median is 40 .
(ii) Yes, there are 2 modes for the given weights of the students.
4. Find the mode and median of the data: 13, 16, 12, 14, 19, 12, 14, 13, 14

Solution:-

Arranging the given data in ascending order, we get
$=12,12,13,13,14,14,14,16,19$
Mode
Mode is the value of the variable which occurs most frequently.
Clearly, 14 occurs the maximum number of times.
Hence, the mode of the given data is 14 .

Median

The value of the middle-most observation is called the median of the data.
Here, $n=9$, which is odd.
Where n is the number of students.
\therefore median $=$ value of $1 / 2(9+1)^{\text {th }}$ observation
$=1 / 2(9+1)$
$=1 / 2(10)$
$=10 / 2$
$=5$
Then, the value of the $5^{\text {th }}$ term $=14$
Hence, the median is 14 .
5. Tell whether the statement is true or false.
(i) The mode is always one of the numbers in a data.

Solution:-

The statement given above is true.
Because Mode is the value of the variable which occurs most frequently in the given data.
Hence, a mode is always one of the numbers in the data.
(ii) The mean is one of the numbers in the data.

Solution:-

The statement given above is false.
Because mean may or may not be one of the numbers in the data.
(iii) The median is always one of the numbers in a data.

Solution:-

The statement given above is true.
Because the median is the value of the middle-most observation in the given data while arranged in ascending or descending order.

Hence, the median is always one of the numbers in a data
(iv) The data 6, 4, 3, 8, 9, 12, 13, and 9 have the mean 9.

Solution:-
Mean = Sum of all given observations / Number of observations
$=(6+4+3+8+9+12+13+9) / 8$
$=(64 / 8)$
$=8$
Hence, the given statement is false.

