1. Complete the last column of the table.

S. No.	Equation	Value	Say whether the equation is satisfied. (Yes/No)
(i)	$x+3=0$	$x=3$	
(ii)	$x+3=0$	$x=0$	
(iii)	$x+3=0$	$x=-3$	
(iv)	$x-7=1$	$x=7$	
(v)	$x-7=1$	$x=8$	
(vi)	$5 x=25$	$x=0$	
(vii)	$5 x=25$	$x=5$	
(viii)	$5 x=25$	$x=-5$	
(ix)	$(\mathrm{m} / 3)=2$	$m=-6$	
(x)	$(\mathrm{m} / 3)=2$	$\mathrm{m}=0$	

$(x i)$	$(\mathrm{m} / 3)=2$	$\mathrm{~m}=6$	

Solution:

(i) $x+3=0$

LHS $=x+3$
By substituting the value of $x=3$
Then,
LHS $=3+3=6$
By comparing LHS and RHS,
LHS \neq RHS
\therefore No, the equation is not satisfied.
(ii) $x+3=0$

LHS $=x+3$
By substituting the value of $x=0$,
Then,
LHS $=0+3=3$
By comparing LHS and RHS,
LHS \neq RHS
\therefore No, the equation is not satisfied.
(iii) $x+3=0$

LHS $=x+3$
By substituting the value of $x=-3$,
Then,
LHS $=-3+3=0$
By comparing LHS and RHS,
LHS = RHS
\therefore Yes, the equation is satisfied.
(iv) $x-7=1$

LHS $=x-7$
By substituting the value of $x=7$,
Then,
LHS $=7-7=0$
By comparing LHS and RHS,
LHS \neq RHS
\therefore No, the equation is not satisfied.
(v) $x-7=1$

LHS $=x-7$
By substituting the value of $x=8$,
Then,
LHS $=8-7=1$
By comparing LHS and RHS,
LHS = RHS
\therefore Yes, the equation is satisfied.
(vi) $5 x=25$

LHS $=5 x$
By substituting the value of $x=0$,
Then,
LHS $=5 \times 0=0$
By comparing LHS and RHS,
LHS \neq RHS
\therefore No, the equation is not satisfied.
(vii) $5 x=25$

LHS $=5 x$

By substituting the value of $x=5$,
Then,
LHS $=5 \times 5=25$
By comparing LHS and RHS,
LHS $=$ RHS
\therefore Yes, the equation is satisfied.
(viii) $5 x=25$

LHS $=5 x$
By substituting the value of $x=-5$,
Then,
LHS $=5 \times(-5)=-25$
By comparing LHS and RHS,
LHS \neq RHS
\therefore No, the equation is not satisfied.
(ix) $m / 3=2$

LHS $=m / 3$
By substituting the value of $m=-6$,
Then,
LHS $=-6 / 3=-2$
By comparing LHS and RHS,
LHS \neq RHS
\therefore No, the equation is not satisfied.
(x) $m / 3=2$

LHS $=m / 3$
By substituting the value of $m=0$,
Then,

LHS $=0 / 3=0$
By comparing LHS and RHS,
LHS $=$ RHS
\therefore No, the equation is not satisfied.
(xi) $m / 3=2$

LHS $=m / 3$
By substituting the value of $m=6$,
Then,
LHS $=6 / 3=2$
By comparing LHS and RHS,
LHS = RHS
\therefore Yes, the equation is satisfied.

S. No.	Equation	Value	Say whether the equation is satisfied. (Yes/No)
(i)	$x+3=0$	$x=3$	No
(ii)	$x+3=0$	$x=0$	No
(iii)	$x+3=0$	$x=-3$	Yes
(iv)	$x-7=1$	$x=7$	No
(v)	$x-7=1$	$x=8$	Yes
(vi)	$5 x=25$	$x=0$	No

(vii)	$5 x=25$	$x=5$	Yes
(viii)	$5 x=25$	$x=-5$	No
(ix)	$(m / 3)=2$	$m=-6$	No
(x)	$(m / 3)=2$	$m=0$	No
(xi)	(m/3) $=2$	$m=6$	Yes

2. Check whether the value given in the brackets is a solution to the given equation or not.
(a) $n+5=19(n=1)$

Solution:

LHS $=\mathrm{n}+5$
By substituting the value of $\mathrm{n}=1$,
Then,
LHS $=n+5$
$=1+5$
$=6$
By comparing LHS and RHS,
$6 \neq 19$
LHS \neq RHS
Hence, the value of $n=1$ is not a solution to the given equation $n+5=19$.
(b) $7 \mathrm{n}+5=19(\mathrm{n}=-2)$

Solution:

LHS $=7 n+5$
By substituting the value of $n=-2$,
Then,

LHS $=7 n+5$
$=(7 \times(-2))+5$
$=-14+5$
$=-9$
By comparing LHS and RHS,
$-9 \neq 19$
LHS \neq RHS
Hence, the value of $n=-2$ is not a solution to the given equation $7 n+5=19$.
(c) $7 \mathrm{n}+5=19(\mathrm{n}=2)$

Solution:
LHS $=7 n+5$
By substituting the value of $n=2$,
Then,
LHS $=7 n+5$
$=(7 \times(2))+5$
$=14+5$
$=19$
By comparing LHS and RHS,
$19=19$
LHS $=$ RHS
Hence, the value of $\mathrm{n}=2$ is a solution to the given equation $7 \mathrm{n}+5=19$.
(d) $4 p-3=13(p=1)$

Solution:
LHS $=4 p-3$
By substituting the value of $p=1$,
Then,

LHS $=4 p-3$
$=(4 \times 1)-3$
$=4-3$
= 1
By comparing LHS and RHS,
$1 \neq 13$
LHS \neq RHS
Hence, the value of $p=1$ is not a solution to the given equation $4 p-3=13$.
(e) $4 p-3=13(p=-4)$

Solution:
LHS $=4 p-3$
By substituting the value of $p=-4$,
Then,
LHS $=4 p-3$
$=(4 \times(-4))-3$
$=-16-3$
$=-19$
By comparing LHS and RHS,
$-19 \neq 13$
LHS \neq RHS
Hence, the value of $p=-4$ is not a solution to the given equation $4 p-3=13$.
(f) $4 p-3=13(p=0)$

Solution:
LHS $=4 p-3$
By substituting the value of $p=0$,
Then,

LHS $=4 p-3$
$=(4 \times 0)-3$
$=0-3$
$=-3$
By comparing LHS and RHS,
$-3 \neq 13$

LHS \neq RHS

Hence, the value of $p=0$ is not a solution to the given equation $4 p-3=13$.
3. Solve the following equations by trial and error method.
(i) $5 p+2=17$

Solution:
LHS $=5 p+2$
By substituting the value of $p=0$,
Then,
LHS $=5 p+2$
$=(5 \times 0)+2$
$=0+2$
$=2$
By comparing LHS and RHS,
$2 \neq 17$
LHS \neq RHS
Hence, the value of $p=0$ is not a solution to the given equation.
Let, $\mathrm{p}=1$
LHS $=5 p+2$
$=(5 \times 1)+2$
$=5+2$
$=7$
By comparing LHS and RHS,
$7 \neq 17$
LHS \neq RHS
Hence, the value of $p=1$ is not a solution to the given equation.
Let, $\mathrm{p}=2$
LHS $=5 p+2$
$=(5 \times 2)+2$
$=10+2$
$=12$
By comparing LHS and RHS,
$12 \neq 17$
LHS \neq RHS
Hence, the value of $p=2$ is not a solution to the given equation.
Let, $\mathrm{p}=3$
LHS $=5 p+2$
$=(5 \times 3)+2$
$=15+2$
$=17$
By comparing LHS and RHS,
$17=17$
$L H S=R H S$
Hence, the value of $p=3$ is a solution to the given equation.
(ii) $3 m-14=4$

Solution:

LHS $=3 m-14$

By substituting the value of $m=3$,
Then,
LHS $=3 m-14$
$=(3 \times 3)-14$
$=9-14$
$=-5$
By comparing LHS and RHS,
$-5 \neq 4$
LHS \neq RHS
Hence, the value of $m=3$ is not a solution to the given equation.
Let, $m=4$
LHS $=3 m-14$
$=(3 \times 4)-14$
$=12-14$
$=-2$
By comparing LHS and RHS,
$-2 \neq 4$
LHS \neq RHS
Hence, the value of $m=4$ is not a solution to the given equation.
Let, $m=5$
LHS $=3 m-14$
$=(3 \times 5)-14$
$=15-14$
$=1$
By comparing LHS and RHS,
$1 \neq 4$

LHS \neq RHS
Hence, the value of $m=5$ is not a solution to the given equation.
Let, $m=6$
LHS $=3 m-14$
$=(3 \times 6)-14$
$=18-14$
$=4$
By comparing LHS and RHS,
$4=4$
LHS = RHS
Hence, the value of $m=6$ is a solution to the given equation.
4. Write equations for the following statements.
(i) The sum of numbers x and 4 is 9 .

Solution:
The above statement can be written in the equation form as,
$=x+4=9$
(ii) $\mathbf{2}$ subtracted from y is $\mathbf{8}$.

Solution:
The above statement can be written in the equation form as,
$=y-2=8$
(iii) Ten times a is 70 .

Solution:

The above statement can be written in the equation form as,
$=10 \mathrm{a}=70$
(iv) The number b divided by 5 gives 6 .

Solution:

The above statement can be written in the equation form as,
$=(\mathrm{b} / 5)=6$
(v) Three-fourths of t is 15 .

Solution:
The above statement can be written in the equation form as,
$=3 / 4 \mathrm{t}=15$
(vi) Seven times mplus 7 gets you 77 .

Solution:

The above statement can be written in the equation form as,
Seven times m is 7 m .
$=7 \mathrm{~m}+7=77$
(vii) One-fourth of a number x minus 4 gives 4 .

Solution:

The above statement can be written in the equation form as,
One-fourth of a number x is $\mathrm{x} / 4$.
$=x / 4-4=4$
(viii) If you take away 6 from 6 times y, you get 60 .

Solution:
The above statement can be written in the equation form as,
6 times y is $6 y$.
$=6 y-6=60$
(ix) If you add 3 to one-third of \mathbf{z}, you get 30 .

Solution:

The above statement can be written in the equation form as,
One-third of z is $z / 3$.
$=3+z / 3=30$
5. Write the following equations in statement forms.
(i) $p+4=15$

Solution:
The sum of numbers pand 4 is 15 .
(ii) $m-7=3$

Solution:

7 subtracted from m is 3 .
(iii) $2 m=7$

Solution:

Twice of number m is 7 .
(iv) $m / 5=3$

Solution:

The number m divided by 5 gives 3 .
(v) $(3 \mathrm{~m}) / 5=6$

Solution:

Three-fifth of m is 6 .
(vi) $3 p+4=25$

Solution:
Three times p plus 4 gives you 25 .
(vii) $4 \mathrm{p}-2=18$

Solution:
Four times p minus 2 gives you 18 .
(viii) $\mathrm{p} / 2+2=8$

Solution:
If you add half of a number p to 2 , you get 8 .
6. Set up an equation in the following cases.
(i) Irfan says that he has 7 marbles, more than five times the marbles Parmit has. Irfan has 37 marbles (Take m to be the number of Parmit's marbles).

Solution:
From the question, it is given that
Number of Parmit's marbles $=\mathrm{m}$
Then,
Irfan has 7 marbles, more than five times the marbles Parmit has.
$=5 \times$ Number of Parmit's marbles $+7=$ Total number of marbles Irfan having
$=(5 \times m)+7=37$
$=5 \mathrm{~m}+7=37$
(ii) Laxmi's father is 49 years old. He is 4 years older than three times Laxmi's age (Take Laxmi's age to be y years).

Solution:

From the question, it is given that
Let Laxmi's age be $=\mathrm{y}$ years old
Then,
Lakshmi's father is 4 years older than three times her age.
$=3 \times$ Laxmi's age $+4=$ Age of Lakshmi's father
$=(3 \times y)+4=49$
$=3 y+4=49$
(iii) The teacher tells the class that the highest marks obtained by a student in her class are twice the lowest marks plus 7. The highest score is 87 (Take the lowest score to be I).

Solution:

From the question, it is given that
Highest score in the class $=87$
Let the lowest score be I.
$=2 \times$ Lowest score $+7=$ Highest score in the class
$=(2 \times I)+7=87$
$=2 \mid+7=87$
(iv) In an isosceles triangle, the vertex angle is twice either base angle (Let the base angle be \mathbf{b} in degrees. Remember that the sum of angles of a triangle is 180 degrees).

Solution:

From the question, it is given that
We know that the sum of angles of a triangle is 180°
Let the base angle be b.
Then,
Vertex angle $=2 \times$ base angle $=2 b$
$=\mathrm{b}+\mathrm{b}+2 \mathrm{~b}=180^{\circ}$
$=4 \mathrm{~b}=180^{\circ}$

