1. State the property that is used in each of the following statements?

(i) If a |l b , then $\angle 1=\angle 5$.

Solution:-
Corresponding angles property is used in the above statement.
(ii) If $\angle 4=\angle 6$, then $\mathrm{a} \| \mathrm{I} \mathrm{b}$.

Solution:-

Alternate interior angles property is used in the above statement.
(iii) If $\angle 4+\angle 5=180^{\circ}$, then a || b.

Solution:-

Interior angles on the same side of the transversal are supplementary.
2. In the adjoining figure, identify

(i) The pairs of corresponding angles.

Solution:-
By observing the figure, the pairs of the corresponding angles are,
$\angle 1$ and $\angle 5, \angle 4$ and $\angle 8, \angle 2$ and $\angle 6, \angle 3$ and $\angle 7$
(ii) The pairs of alternate interior angles.

Solution:-

By observing the figure, the pairs of alternate interior angles are,
$\angle 2$ and $\angle 8, \angle 3$ and $\angle 5$
(iii) The pairs of interior angles on the same side of the transversal.

Solution:-

By observing the figure, the pairs of interior angles on the same side of the transversal are $\angle 2$ and $\angle 5, \angle 3$ and $\angle 8$
(iv) The vertically opposite angles.

Solution:-

By observing the figure, the vertically opposite angles are,
$\angle 1$ and $\angle 3, \angle 5$ and $\angle 7, \angle 2$ and $\angle 4, \angle 6$ and $\angle 8$
3. In the adjoining figure, p || q . Find the unknown angles.

Solution:-
By observing the figure,
$\angle \mathrm{d}=\angle 125^{\circ} \ldots[\because$ corresponding angles $]$
We know that Linear pair is the sum of adjacent angles is 180°
Then,
$=\angle \mathrm{e}+125^{\circ}=180^{\circ} \ldots$ [Linear pair]
$=\angle \mathrm{e}=180^{\circ}-125^{\circ}$
$=\angle \mathrm{e}=55^{\circ}$
From the rule of vertically opposite angles,
$\angle \mathrm{f}=\angle \mathrm{e}=55^{\circ}$
$\angle \mathrm{b}=\angle \mathrm{d}=125^{\circ}$
By the property of corresponding angles,
$\angle \mathrm{C}=\angle \mathrm{f}=55^{\circ}$
$\angle a=\angle e=55^{\circ}$
4. Find the value of x in each of the following figures if I || m.
(i)

Solution:-
Let us assume the other angle on the line m be $\angle \mathrm{y}$.

Then,
By the property of corresponding angles,
$\angle y=110^{\circ}$
We know that Linear pair is the sum of adjacent angles is 180°
Then,
$=\angle x+\angle y=180^{\circ}$
$=\angle x+110^{\circ}=180^{\circ}$
$=\angle x=180^{\circ}-110^{\circ}$
$=\angle x=70^{\circ}$
(ii)

Solution:-
By the property of corresponding angles,
$\angle x=100^{\circ}$
5. In the given figure, the arms of the two angles are parallel.

If $\angle A B C=70^{\circ}$, then find
(i) $\angle D G C$
(ii) $\angle D E F$

Solution:-
(i) Let us consider $A B \| D G$.
$B C$ is the transversal line intersecting $A B$ and $D G$.

By the property of corresponding angles

$$
\angle D G C=\angle A B C
$$

Then,
$\angle D G C=70^{\circ}$
(ii) Let us consider that $\mathrm{BC} \| \mathrm{EF}$.
$D E$ is the transversal line intersecting $B C$ and $E F$.
By the property of corresponding angles
$\angle D E F=\angle D G C$
Then,

$$
\angle D E F=70^{\circ}
$$

6. In the given figures below, decide whether I is parallel to m .
(i)

Solution:-

Let us consider the two lines, I and m.
n is the transversal line intersecting I and m .
We know that the sum of interior angles on the same side of the transversal is 180°.
Then,
$=126^{\circ}+44^{\circ}$
$=170^{\circ}$
But, the sum of interior angles on the same side of transversal is not equal to 180°.

So, line I is not parallel to line m.
(ii)

Solution:-

Let us assume $\angle x$ be the vertically opposite angle formed due to the intersection of the straight line I and transversal n,

Then, $\angle x=75^{\circ}$

Let us consider the two lines, I and m.
n is the transversal line intersecting I and m .
We know that the sum of interior angles on the same side of the transversal is 180°.
Then,
$=75^{\circ}+75^{\circ}$
$=150^{\circ}$
But, the sum of interior angles on the same side of transversal is not equal to 180°.

So, line I is not parallel to line m.
(iii)

Solution:-
Let us assume $\angle x$ be the vertically opposite angle formed due to the intersection of the straight line I and transversal line n .

Let us consider the two lines, I and m.
n is the transversal line intersecting I and m .
We know that the sum of interior angles on the same side of the transversal is 180°.
Then,
$=123^{\circ}+\angle x$
$=123^{\circ}+57^{\circ}$
$=180^{\circ}$
\therefore The sum of interior angles on the same side of the transversal is equal to 180°.
So, line I is parallel to line m.
(iv)

Solution:-

Let us assume $\angle x$ be the angle formed due to the intersection of the Straight line I and transversal line n .

We know that the Linear pair is the sum of adjacent angles equal to 180°.
$=\angle x+98^{\circ}=180^{\circ}$
$=\angle x=180^{\circ}-98^{\circ}$
$=\angle x=82^{\circ}$
Now, we consider $\angle \mathrm{x}$ and 72° are the corresponding angles.
For I and m to be parallel to each other, corresponding angles should be equal.
But, in the given figure, corresponding angles measure 82° and 72°, respectively.
\therefore Line I is not parallel to line m .

