

EXERCISE 5.2

PAGE: 110

1. State the property that is used in each of the following statements?

(i) If a \parallel b, then $\angle 1 = \angle 5$.

Solution:-

Corresponding angles property is used in the above statement.

(ii) If $\angle 4 = \angle 6$, then a \parallel b.

Solution:-

Alternate interior angles property is used in the above statement.

(iii) If $\angle 4 + \angle 5 = 180^{\circ}$, then a || b.

Solution:-

Interior angles on the same side of the transversal are supplementary.

2. In the adjoining figure, identify

(i) The pairs of corresponding angles.

Solution:-

By observing the figure, the pairs of the corresponding angles are,

 $\angle 1$ and $\angle 5$, $\angle 4$ and $\angle 8$, $\angle 2$ and $\angle 6$, $\angle 3$ and $\angle 7$

(ii) The pairs of alternate interior angles.

Solution:-

By observing the figure, the pairs of alternate interior angles are,

 $\angle 2$ and $\angle 8$, $\angle 3$ and $\angle 5$

(iii) The pairs of interior angles on the same side of the transversal.

Solution:-

By observing the figure, the pairs of interior angles on the same side of the transversal are $\angle 2$ and $\angle 5$, $\angle 3$ and $\angle 8$

(iv) The vertically opposite angles.

Solution:-

By observing the figure, the vertically opposite angles are,

 $\angle 1$ and $\angle 3$, $\angle 5$ and $\angle 7$, $\angle 2$ and $\angle 4$, $\angle 6$ and $\angle 8$

3. In the adjoining figure, $p \parallel q$. Find the unknown angles.

Solution:-

By observing the figure,

∠d = ∠125° ... [∵ corresponding angles]

We know that Linear pair is the sum of adjacent angles is 180°

Then,

$$= \angle e + 125^{\circ} = 180^{\circ} \dots [Linear pair]$$

$$= \angle e = 180^{\circ} - 125^{\circ}$$

From the rule of vertically opposite angles,

$$\angle f = \angle e = 55^{\circ}$$

By the property of corresponding angles,

$$\angle c = \angle f = 55^{\circ}$$

4. Find the value of x in each of the following figures if I $\|$ m.

(i)

Solution:-

Let us assume the other angle on the line m be $\angle y$.

Then,

By the property of corresponding angles,

We know that Linear pair is the sum of adjacent angles is $180^{\! \circ}$

Then,

(ii)

Solution:-

By the property of corresponding angles,

5. In the given figure, the arms of the two angles are parallel.

If $\angle ABC = 70^{\circ}$, then find

- (i) ∠DGC
- (ii) ∠DEF

Solution:-

(i) Let us consider AB ∥ DG.

BC is the transversal line intersecting AB and DG.

By the property of corresponding angles

∠DGC = ∠ABC

Then.

∠DGC = 70°

(ii) Let us consider that BC ∥ EF.

DE is the transversal line intersecting BC and EF.

By the property of corresponding angles

∠DEF = ∠DGC

Then,

∠DEF = 70°

6. In the given figures below, decide whether I is parallel to m.

(i)

Solution:-

Let us consider the two lines, I and m.

n is the transversal line intersecting I and m.

We know that the sum of interior angles on the same side of the transversal is 180°.

Then,

= 126° + 44°

= 170°

But, the sum of interior angles on the same side of transversal is not equal to 180°.

So, line I is not parallel to line m.

(ii)

Solution:-

Let us assume $\angle x$ be the vertically opposite angle formed due to the intersection of the straight line I and transversal n,

Then, $\angle x = 75^{\circ}$

Let us consider the two lines, I and m.

n is the transversal line intersecting I and m.

We know that the sum of interior angles on the same side of the transversal is 180°.

Then,

$$= 75^{\circ} + 75^{\circ}$$

But, the sum of interior angles on the same side of transversal is not equal to 180°.

So, line I is not parallel to line m.

(iii)

Solution:-

Let us assume $\angle x$ be the vertically opposite angle formed due to the intersection of the straight line I and transversal line n.

Let us consider the two lines, I and m.

n is the transversal line intersecting I and m.

We know that the sum of interior angles on the same side of the transversal is 180°.

Then,

$$= 123^{\circ} + 57^{\circ}$$

∴ The sum of interior angles on the same side of the transversal is equal to 180°.

So, line I is parallel to line m.

(iv)

Solution:-

Let us assume ∠x be the angle formed due to the intersection of the Straight line I and transversal line n.

We know that the Linear pair is the sum of adjacent angles equal to 180° .

$$= \angle x + 98^{\circ} = 180^{\circ}$$

$$= \angle x = 180^{\circ} - 98^{\circ}$$

$$= \angle x = 82^{\circ}$$

Now, we consider $\angle x$ and 72° are the corresponding angles.

For I and m to be parallel to each other, corresponding angles should be equal.

But, in the given figure, corresponding angles measure 82° and 72°, respectively.

∴ Line I is not parallel to line m.