EXERCISE 6.4

1. Is it possible to have a triangle with the following sides?
(i) $\mathbf{2 c m}, \mathbf{3 c m}, 5 \mathrm{~cm}$

Solution:-

Clearly, we have
$(2+3)=5$
$5=5$
Thus, the sum of any two of these numbers is not greater than the third.
Hence, it is not possible to draw a triangle whose sides are $2 \mathrm{~cm}, 3 \mathrm{~cm}$ and 5 cm .
(ii) $\mathbf{3 c m}, 6 \mathrm{~cm}, 7 \mathrm{~cm}$

Solution:-

Clearly, we have
$(3+6)=9>7$
$(6+7)=13>3$
$(7+3)=10>6$
Thus, the sum of any two of these numbers is greater than the third.
Hence, it is possible to draw a triangle whose sides are $3 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm .
(iii) $6 \mathrm{~cm}, 3 \mathrm{~cm}, 2 \mathrm{~cm}$

Solution:-

Clearly, we have
$(3+2)=5<6$
Thus, the sum of any two of these numbers is less than the third.
Hence, it is not possible to draw a triangle whose sides are $6 \mathrm{~cm}, 3 \mathrm{~cm}$ and 2 cm .
2. Take any point O in the interior of a triangle $P Q R$. Is
(i) $O P+O Q>P Q$?
(ii) $O Q+O R>Q R$?
(iii) $\mathrm{OR}+\mathrm{OP}>\mathrm{RP}$?

Solution:-

If we take any point O in the interior of a triangle $P Q R$ and join $O R, O P, O Q$.
Then, we get three triangles $\triangle O P Q, \triangle O Q R$ and $\triangle O R P$ are shown in the figure below.

We know that,
The sum of the length of any two sides is always greater than the third side.
(i) Yes, $\triangle O P Q$ has sides $O P, O Q$ and $P Q$.

So, $O P+O Q>P Q$
(ii) Yes, $\triangle O Q R$ has sides $O R, O Q$ and $Q R$.

So, OQ + OR > QR
(iii) Yes, $\triangle O R P$ has sides OR, OP and PR.

So, $O R+O P>R P$
3. AM is a median of a triangle $A B C$.

Is $A B+B C+C A>2 A M$?
(Consider the sides of triangles $\triangle A B M$ and $\triangle A M C$.)

Solution:-

We know that,
The sum of the length of any two sides is always greater than the third side.
Now consider the $\triangle A B M$,
Here, $A B+B M>A M .$. [equation i]
Then, consider the $\triangle \mathrm{ACM}$
Here, $A C+C M>A M .$. [equation ii]
By adding equations [i] and [ii], we get,
$A B+B M+A C+C M>A M+A M$
From the figure we have, $B C=B M+C M$
$A B+B C+A C>2 A M$
Hence, the given expression is true.
4. $A B C D$ is a quadrilateral.

Is $A B+B C+C D+D A>A C+B D$?

Solution:-

We know that,
The sum of the length of any two sides is always greater than the third side.
Now consider the $\triangle A B C$,

Here, $A B+B C>C A .$. [equation i]
Then, consider the $\triangle \mathrm{BCD}$
Here, $B C+C D>D B .$. [equation ii]
Consider the $\triangle C D A$
Here, $C D+D A>A C .$. [equation iii]
Consider the $\triangle D A B$
Here, $D A+A B>D B \ldots$ [equation iv]
By adding equations [i], [ii], [iii] and [iv], we get,
$A B+B C+B C+C D+C D+D A+D A+A B>C A+D B+A C+D B$
$2 A B+2 B C+2 C D+2 D A>2 C A+2 D B$
Take out 2 on both the side,
$2(A B+B C+C A+D A)>2(C A+D B)$
$A B+B C+C A+D A>C A+D B$
Hence, the given expression is true.
5. $A B C D$ is quadrilateral. Is $A B+B C+C D+D A<2(A C+B D)$

Solution:-

Let us consider $A B C D$ as a quadrilateral, and P is the point where the diagonals intersect. As shown in the figure below.

We know that,
The sum of the length of any two sides is always greater than the third side.
Now consider the $\triangle \mathrm{PAB}$,
Here, $\mathrm{PA}+\mathrm{PB}<\mathrm{AB} \ldots$ [equation i]

Then, consider the $\triangle \mathrm{PBC}$
Here, $\mathrm{PB}+\mathrm{PC}<\mathrm{BC} \ldots$ [equation ii]
Consider the $\triangle \mathrm{PCD}$
Here, PC + PD < CD ... [equation iii]
Consider the \triangle PDA
Here, PD + PA < DA ... [equation iv]
By adding equations [i], [ii], [iii] and [iv], we get,
$P A+P B+P B+P C+P C+P D+P D+P A<A B+B C+C D+D A$
$2 P A+2 P B+2 P C+2 P D<A B+B C+C D+D A$
$2 \mathrm{PA}+2 \mathrm{PC}+2 \mathrm{~PB}+2 \mathrm{PD}<\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}$
$2(P A+P C)+2(P B+P D)<A B+B C+C D+D A$
From the figure, we have, $A C=P A+P C$ and $B D=P B+P D$
Then,
$2 A C+2 B D<A B+B C+C D+D A$
$2(A C+B D)<A B+B C+C D+D A$
Hence, the given expression is true.
6. The lengths of two sides of a triangle are 12 cm and 15 cm . Between what two measures should the length of the third side fall?

Solution:-

We know that,
The sum of the length of any two sides is always greater than the third side.
From the question, it is given that two sides of the triangle are 12 cm and 15 cm .
So, the third side length should be less than the sum of the other two sides,

$$
12+15=27 \mathrm{~cm}
$$

Then, it is given that the third side can not be less than the difference of the two sides, $15-12=3 \mathrm{~cm}$
So, the length of the third side falls between 3 cm and 27 cm .

