EXERCISE 1.1

1. Using appropriate properties, find:
(i) $-2 / 3 \times 3 / 5+5 / 2-3 / 5 \times 1 / 6$

Solution:
$-2 / 3 \times 3 / 5+5 / 2-3 / 5 \times 1 / 6$
$=-2 / 3 \times 3 / 5-3 / 5 \times 1 / 6+5 / 2$ (by commutativity)
$=3 / 5(-2 / 3-1 / 6)+5 / 2$
$=3 / 5((-4-1) / 6)+5 / 2$
$=3 / 5((-5) / 6)+5 / 2$ (by distributivity)
$=-15 / 30+5 / 2$
$=-1 / 2+5 / 2$
$=4 / 2$
$=2$
(ii) $2 / 5 \times(-3 / 7)-1 / 6 \times 3 / 2+1 / 14 \times 2 / 5$

Solution:
$2 / 5 \times(-3 / 7)-1 / 6 \times 3 / 2+1 / 14 \times 2 / 5$
$=2 / 5 \times(-3 / 7)+1 / 14 \times 2 / 5-(1 / 6 \times 3 / 2)$ (by commutativity)
$=2 / 5 \times(-3 / 7+1 / 14)-3 / 12$
$=2 / 5 \times((-6+1) / 14)-3 / 12$
$=2 / 5 \times((-5) / 14))-1 / 4$
$=(-10 / 70)-1 / 4$
$=-1 / 7-1 / 4$
$=(-4-7) / 28$
$=-11 / 28$
2. Write the additive inverse of each of the following:

Solution:
(i) $2 / 8$

The Additive inverse of $2 / 8$ is $-2 / 8$
(ii) $-5 / 9$

The additive inverse of $-5 / 9$ is $5 / 9$
(iii) $-6 /-5=6 / 5$

The additive inverse of $6 / 5$ is $-6 / 5$
(iv) $2 /-9=-2 / 9$

The additive inverse of $-2 / 9$ is $2 / 9$
(v) $19 /-16=-19 / 16$

The additive inverse of $-19 / 16$ is $19 / 16$
3. Verify that: $-(-x)=x$ for:
(i) $x=11 / 15$
(ii) $\mathbf{x}=-13 / 17$

Solution:
(i) $x=11 / 15$

We have, $x=11 / 15$
The additive inverse of x is $-\mathrm{x}($ as $\mathrm{x}+(-\mathrm{x})=0)$.
Then, the additive inverse of $11 / 15$ is $-11 / 15($ as $11 / 15+(-11 / 15)=0)$.
The same equality, $11 / 15+(-11 / 15)=0$, shows that the additive inverse of $-11 / 15$ is $11 / 15$.
Or, $-(-11 / 15)=11 / 15$
i.e., $-(-x)=x$
(ii) $-13 / 17$

We have, $x=-13 / 17$
The additive inverse of x is $-\mathrm{x}($ as $\mathrm{x}+(-\mathrm{x})=0)$.
Then, the additive inverse of $-13 / 17$ is $13 / 17($ as $13 / 17+(-13 / 17)=0)$.
The same equality $(-13 / 17+13 / 17)=0$, shows that the additive inverse of $13 / 17$ is $-13 / 17$.
Or, $-(13 / 17)=-13 / 17$,
i.e., $-(-x)=x$
4. Find the multiplicative inverse of the following:
(i) -13 (ii) $-13 / 19$ (iii) $1 / 5$ (iv) $-5 / 8 \times(-3 / 7)($ v $)-1 \times(-2 / 5)($ vi) -1

Solution:
(i) -13

Multiplicative inverse of -13 is $-1 / 13$.
(ii) $-13 / 19$

Multiplicative inverse of $-13 / 19$ is $-19 / 13$.
(iii) $1 / 5$

Multiplicative inverse of $1 / 5$ is 5 .
(iv) $-5 / 8 \times(-3 / 7)=15 / 56$

Multiplicative inverse of $15 / 56$ is $56 / 15$.
(v) $-1 \times(-2 / 5)=2 / 5$

Multiplicative inverse of $2 / 5$ is $5 / 2$.
(vi) -1

Multiplicative inverse of -1 is -1 .
5. Name the property under multiplication used in each of the following:
(i) $-4 / 5 \times 1=1 \times(-4 / 5)=-4 / 5$
(ii) $-13 / 17 \times(-2 / 7)=-2 / 7 \times(-13 / 17)$
(iii) $-19 / 29 \times 29 /-19=1$

Solution:
(i) $-4 / 5 \times 1=1 \times(-4 / 5)=-4 / 5$

Here 1 is the multiplicative identity.
(ii) $-13 / 17 \times(-2 / 7)=-2 / 7 \times(-13 / 17)$

The property of commutativity is used in the equation.
(iii) $-19 / 29 \times 29 /-19=1$

The multiplicative inverse is the property used in this equation.
6. Multiply $6 / 13$ by the reciprocal of $-7 / 16$.

Solution:
Reciprocal of $-7 / 16=16 /-7=-16 / 7$
According to the question,
$6 / 13 \times($ Reciprocal of $-7 / 16)$
$6 / 13 \times(-16 / 7)=-96 / 91$
7. Tell what property allows you to compute $1 / 3 \times(6 \times 4 / 3)$ as $(1 / 3 \times 6) \times 4 / 3$.

Solution:
$1 / 3 \times(6 \times 4 / 3)=(1 / 3 \times 6) \times 4 / 3$
Here, the way in which factors are grouped in a multiplication problem supposedly does not change the product. Hence, the Associativity Property is used here.
8. Is $8 / 9$ the multiplication inverse of $-1 \frac{1}{8}$? Why or why not?

Solution:
$-1 \frac{1}{8}=-9 / 8$
[Multiplicative inverse \Rightarrow product should be 1]
According to the question,
$8 / 9 \times(-9 / 8)=-1 \neq 1$
Therefore, $8 / 9$ is not the multiplicative inverse of $-1 \frac{1}{8}$.
9. If 0.3 is the multiplicative inverse of $3 \frac{1}{3}$
$\overline{3}$? Why or why not?
Solution:
$3 \frac{1}{3}=10 / 3$
$0.3=3 / 10$
[Multiplicative inverse \Rightarrow product should be 1]
According to the question,
$3 / 10 \times 10 / 3=1$

Therefore, 0.3 is the multiplicative inverse of $3 \frac{1}{3}$.
10. Write:
(i) The rational number that does not have a reciprocal.
(ii) The rational numbers that are equal to their reciprocals.
(iii) The rational number that is equal to its negative.

Solution:
(I) The rational number that does not have a reciprocal is 0 .

Reason:
$0=0 / 1$
Reciprocal of $0=1 / 0$, which is not defined.
(ii) The rational numbers that are equal to their reciprocals are 1 and -1 .

Reason:
$1=1 / 1$
Reciprocal of $1=1 / 1=1$, similarly, reciprocal of $-1=-1$
(iii) The rational number that is equal to its negative is 0 .

Reason:
Negative of $0=-0=0$
11. Fill in the blanks.
(i) Zero has \qquad reciprocal.
(ii) The numbers \qquad and \qquad are their own reciprocals
(iii) The reciprocal of $\mathbf{- 5}$ is \qquad .
(iv) Reciprocal of $1 / x$, where $x \neq 0$ is \qquad .
(v) The product of two rational numbers is always a \qquad .
(vi) The reciprocal of a positive rational number is \qquad .

Solution:
(i) Zero has no reciprocal.
(ii) The numbers $\underline{1}$ and $\underline{1}$ are their own reciprocals
(iii) The reciprocal of -5 is $-1 / 5$.
(iv) Reciprocal of $1 / x$, where $x \neq 0$ is \underline{x}.
(v) The product of two rational numbers is always a rational number.
(vi) The reciprocal of a positive rational number is positive.

