EXERCISE 1.2

1. Represent these numbers on the number line.
(i) $7 / 4$
(ii) -5/6

Solution:
(i) $7 / 4$

Divide the line between the whole numbers into 4 parts, i.e. divide the line between 0 and 1 to 4 parts, 1 and 2 to 4 parts, and so on.

Thus, the rational number $7 / 4$ lies at a distance of 7 points away from 0 towards the positive number line.

(ii) $-5 / 6$

Divide the line between the integers into 4 parts, i.e. divide the line between 0 and -1 to 6 parts, -1 and -2 to 6 parts, and so on. Here, since the numerator is less than the denominator, dividing 0 to -1 into 6 parts is sufficient.

Thus, the rational number $-5 / 6$ lies at a distance of 5 points, away from 0 , towards the negative number line.

2. Represent $-2 / 11,-5 / 11,-9 / 11$ on a number line.

Solution:
Divide the line between the integers into 11 parts.
Thus, the rational numbers $-2 / 11,-5 / 11$, and $-9 / 11$ lie at a distance of 2,5 , and 9 points away from 0 , towards the negative number line, respectively.

3. Write five rational numbers which are smaller than 2.

Solution:

The number 2 can be written as 20/10

Hence, we can say that the five rational numbers which are smaller than 2 are:
$2 / 10,5 / 10,10 / 10,15 / 10,19 / 10$
4. Find the rational numbers between $-2 / 5$ and $1 / 2$.

Solution:
Let us make the denominators the same, say 50 .
$-2 / 5=(-2 \times 10) /(5 \times 10)=-20 / 50$
$1 / 2=(1 \times 25) /(2 \times 25)=25 / 50$
Ten rational numbers between $-2 / 5$ and $1 / 2=$ ten rational numbers between $-20 / 50$ and $25 / 50$.

Therefore, ten rational numbers between $-20 / 50$ and $25 / 50=-18 / 50,-15 / 50,-5 / 50,-2 / 50,4 / 50,5 / 50,8 / 50,12 / 50,15 / 50$, 20/50.
5. Find five rational numbers between:
(i) $2 / 3$ and $4 / 5$
(ii) $-3 / 2$ and $5 / 3$
(iii) $1 / 4$ and $1 / 2$

Solution:
(i) $2 / 3$ and $4 / 5$

Let us make the denominators the same, say 60
i.e., $2 / 3$ and $4 / 5$ can be written as:
$2 / 3=(2 \times 20) /(3 \times 20)=40 / 60$
$4 / 5=(4 \times 12) /(5 \times 12)=48 / 60$
Five rational numbers between $2 / 3$ and $4 / 5=$ five rational numbers between $40 / 60$ and $48 / 60$.
Therefore, five rational numbers between $40 / 60$ and $48 / 60=41 / 60,42 / 60,43 / 60,44 / 60,45 / 60$.
(ii) $-3 / 2$ and $5 / 3$

Let us make the denominators the same, say 6
i.e., $-3 / 2$ and $5 / 3$ can be written as:
$-3 / 2=(-3 \times 3) /(2 \times 3)=-9 / 6$
$5 / 3=(5 \times 2) /(3 \times 2)=10 / 6$
Five rational numbers between $-3 / 2$ and $5 / 3=$ five rational numbers between $-9 / 6$ and 10/6
Therefore, five rational numbers between $-9 / 6$ and $10 / 6=-1 / 6,2 / 6,3 / 6,4 / 6,5 / 6$.
(iii) $1 / 4$ and $1 / 2$

Let us make the denominators the same, say 24
i.e., $1 / 4$ and $1 / 2$ can be written as:
$1 / 4=(1 \times 6) /(4 \times 6)=6 / 24$
$1 / 2=(1 \times 12) /(2 \times 12)=12 / 24$
Five rational numbers between $1 / 4$ and $1 / 2=$ five rational numbers between $6 / 24$ and $12 / 24$.
Therefore, five rational numbers between $6 / 24$ and $12 / 24=7 / 24,8 / 24,9 / 24,10 / 24,11 / 24$.

6. Write five rational numbers greater than -2.

Solution:
-2 can be written as $-20 / 10$
Hence, we can say that the five rational numbers greater than -2 are
$-10 / 10,-5 / 10,-1 / 10,5 / 10,7 / 10$
7. Find ten rational numbers between $3 / 5$ and $3 / 4$.

Solution:
Let us make the denominators the same, say 80 .
$3 / 5=(3 \times 16) /(5 \times 16)=48 / 80$
$3 / 4=(3 \times 20) /(4 \times 20)=60 / 80$
Ten rational numbers between $3 / 5$ and $3 / 4=$ ten rational numbers between $48 / 80$ and $60 / 80$.
Therefore, ten rational numbers between $48 / 80$ and $60 / 80=49 / 80,50 / 80,51 / 80,52 / 80,54 / 80,55 / 80,56 / 80,57 / 80$, 58/80, 59/80.

