## EXERCISE 1.1

1. Using appropriate properties, find:
(i) $-2 / 3 \times 3 / 5+5 / 2-3 / 5 \times 1 / 6$

Solution:
$-2 / 3 \times 3 / 5+5 / 2-3 / 5 \times 1 / 6$
$=-2 / 3 \times 3 / 5-3 / 5 \times 1 / 6+5 / 2$ (by commutativity)
$=3 / 5(-2 / 3-1 / 6)+5 / 2$
$=3 / 5((-4-1) / 6)+5 / 2$
$=3 / 5((-5) / 6)+5 / 2$ (by distributivity)
$=-15 / 30+5 / 2$
$=-1 / 2+5 / 2$
$=4 / 2$
$=2$
(ii) $2 / 5 \times(-3 / 7)-1 / 6 \times 3 / 2+1 / 14 \times 2 / 5$

Solution:
$2 / 5 \times(-3 / 7)-1 / 6 \times 3 / 2+1 / 14 \times 2 / 5$
$=2 / 5 \times(-3 / 7)+1 / 14 \times 2 / 5-(1 / 6 \times 3 / 2)$ (by commutativity)
$=2 / 5 \times(-3 / 7+1 / 14)-3 / 12$
$=2 / 5 \times((-6+1) / 14)-3 / 12$
$=2 / 5 \times((-5) / 14))-1 / 4$
$=(-10 / 70)-1 / 4$
$=-1 / 7-1 / 4$
$=(-4-7) / 28$
$=-11 / 28$
2. Write the additive inverse of each of the following:

Solution:
(i) $2 / 8$

The Additive inverse of $2 / 8$ is $-2 / 8$
(ii) $-5 / 9$

The additive inverse of $-5 / 9$ is $5 / 9$
(iii) $-6 /-5=6 / 5$

The additive inverse of $6 / 5$ is $-6 / 5$
(iv) $2 /-9=-2 / 9$

The additive inverse of $-2 / 9$ is $2 / 9$
(v) $19 /-16=-19 / 16$

The additive inverse of $-19 / 16$ is $19 / 16$
3. Verify that: $-(-x)=x$ for:
(i) $x=11 / 15$
(ii) $\mathbf{x}=-13 / 17$

Solution:
(i) $x=11 / 15$

We have, $x=11 / 15$
The additive inverse of x is $-\mathrm{x}($ as $\mathrm{x}+(-\mathrm{x})=0)$.
Then, the additive inverse of $11 / 15$ is $-11 / 15($ as $11 / 15+(-11 / 15)=0)$.
The same equality, $11 / 15+(-11 / 15)=0$, shows that the additive inverse of $-11 / 15$ is $11 / 15$.
Or, $-(-11 / 15)=11 / 15$
i.e., $-(-x)=x$
(ii) $-13 / 17$

We have, $x=-13 / 17$
The additive inverse of x is $-\mathrm{x}($ as $\mathrm{x}+(-\mathrm{x})=0)$.
Then, the additive inverse of $-13 / 17$ is $13 / 17($ as $13 / 17+(-13 / 17)=0)$.
The same equality $(-13 / 17+13 / 17)=0$, shows that the additive inverse of $13 / 17$ is $-13 / 17$.
Or, $-(13 / 17)=-13 / 17$,
i.e., $-(-x)=x$
4. Find the multiplicative inverse of the following:
(i) -13 (ii) $-13 / 19$ (iii) $1 / 5$ (iv) $-5 / 8 \times(-3 / 7)($ v $)-1 \times(-2 / 5)($ vi) -1

Solution:
(i) -13

Multiplicative inverse of -13 is $-1 / 13$.
(ii) $-13 / 19$

Multiplicative inverse of $-13 / 19$ is $-19 / 13$.
(iii) $1 / 5$

Multiplicative inverse of $1 / 5$ is 5 .
(iv) $-5 / 8 \times(-3 / 7)=15 / 56$

Multiplicative inverse of $15 / 56$ is $56 / 15$.
(v) $-1 \times(-2 / 5)=2 / 5$

Multiplicative inverse of $2 / 5$ is $5 / 2$.
(vi) -1

Multiplicative inverse of -1 is -1 .
5. Name the property under multiplication used in each of the following:
(i) $-4 / 5 \times 1=1 \times(-4 / 5)=-4 / 5$
(ii) $-13 / 17 \times(-2 / 7)=-2 / 7 \times(-13 / 17)$
(iii) $-19 / 29 \times 29 /-19=1$

Solution:
(i) $-4 / 5 \times 1=1 \times(-4 / 5)=-4 / 5$

Here 1 is the multiplicative identity.
(ii) $-13 / 17 \times(-2 / 7)=-2 / 7 \times(-13 / 17)$

The property of commutativity is used in the equation.
(iii) $-19 / 29 \times 29 /-19=1$

The multiplicative inverse is the property used in this equation.
6. Multiply $6 / 13$ by the reciprocal of $-7 / 16$.

Solution:
Reciprocal of $-7 / 16=16 /-7=-16 / 7$
According to the question,
$6 / 13 \times($ Reciprocal of $-7 / 16)$
$6 / 13 \times(-16 / 7)=-96 / 91$
7. Tell what property allows you to compute $1 / 3 \times(6 \times 4 / 3)$ as $(1 / 3 \times 6) \times 4 / 3$.

Solution:
$1 / 3 \times(6 \times 4 / 3)=(1 / 3 \times 6) \times 4 / 3$
Here, the way in which factors are grouped in a multiplication problem supposedly does not change the product. Hence, the Associativity Property is used here.
8. Is $8 / 9$ the multiplication inverse of $-1 \frac{1}{8}$ ? Why or why not?

Solution:
$-1 \frac{1}{8}=-9 / 8$
[Multiplicative inverse $\Rightarrow$ product should be 1]
According to the question,
$8 / 9 \times(-9 / 8)=-1 \neq 1$
Therefore, $8 / 9$ is not the multiplicative inverse of $-1 \frac{1}{8}$.
9. If 0.3 is the multiplicative inverse of $3 \frac{1}{3}$
$\overline{3}$ ? Why or why not?
Solution:
$3 \frac{1}{3}=10 / 3$
$0.3=3 / 10$
[Multiplicative inverse $\Rightarrow$ product should be 1]
According to the question,
$3 / 10 \times 10 / 3=1$

Therefore, 0.3 is the multiplicative inverse of $3 \frac{1}{3}$.
10. Write:
(i) The rational number that does not have a reciprocal.
(ii) The rational numbers that are equal to their reciprocals.
(iii) The rational number that is equal to its negative.

Solution:
(I) The rational number that does not have a reciprocal is 0 .

Reason:
$0=0 / 1$
Reciprocal of $0=1 / 0$, which is not defined.
(ii) The rational numbers that are equal to their reciprocals are 1 and -1 .

Reason:
$1=1 / 1$
Reciprocal of $1=1 / 1=1$, similarly, reciprocal of $-1=-1$
(iii) The rational number that is equal to its negative is 0 .

Reason:
Negative of $0=-0=0$
11. Fill in the blanks.
(i) Zero has $\qquad$ reciprocal.
(ii) The numbers $\qquad$ and $\qquad$ are their own reciprocals
(iii) The reciprocal of $\mathbf{- 5}$ is $\qquad$ .
(iv) Reciprocal of $1 / x$, where $x \neq 0$ is $\qquad$ .
(v) The product of two rational numbers is always a $\qquad$ .
(vi) The reciprocal of a positive rational number is $\qquad$ .

Solution:
(i) Zero has no reciprocal.
(ii) The numbers $\underline{1}$ and $\underline{1}$ are their own reciprocals
(iii) The reciprocal of -5 is $-1 / 5$.
(iv) Reciprocal of $1 / x$, where $x \neq 0$ is $\underline{x}$.
(v) The product of two rational numbers is always a rational number.
(vi) The reciprocal of a positive rational number is positive.

## EXERCISE 1.2

1. Represent these numbers on the number line.
(i) $7 / 4$
(ii) -5/6

Solution:
(i) $7 / 4$

Divide the line between the whole numbers into 4 parts, i.e. divide the line between 0 and 1 to 4 parts, 1 and 2 to 4 parts, and so on.

Thus, the rational number $7 / 4$ lies at a distance of 7 points away from 0 towards the positive number line.

(ii) $-5 / 6$

Divide the line between the integers into 4 parts, i.e. divide the line between 0 and -1 to 6 parts, -1 and -2 to 6 parts, and so on. Here, since the numerator is less than the denominator, dividing 0 to -1 into 6 parts is sufficient.

Thus, the rational number $-5 / 6$ lies at a distance of 5 points, away from 0 , towards the negative number line.

2. Represent $-2 / 11,-5 / 11,-9 / 11$ on a number line.

Solution:
Divide the line between the integers into 11 parts.
Thus, the rational numbers $-2 / 11,-5 / 11$, and $-9 / 11$ lie at a distance of 2,5 , and 9 points away from 0 , towards the negative number line, respectively.

3. Write five rational numbers which are smaller than 2.

## Solution:

The number 2 can be written as 20/10

Hence, we can say that the five rational numbers which are smaller than 2 are:
$2 / 10,5 / 10,10 / 10,15 / 10,19 / 10$
4. Find the rational numbers between $-2 / 5$ and $1 / 2$.

Solution:
Let us make the denominators the same, say 50 .
$-2 / 5=(-2 \times 10) /(5 \times 10)=-20 / 50$
$1 / 2=(1 \times 25) /(2 \times 25)=25 / 50$
Ten rational numbers between $-2 / 5$ and $1 / 2=$ ten rational numbers between $-20 / 50$ and $25 / 50$.

Therefore, ten rational numbers between $-20 / 50$ and $25 / 50=-18 / 50,-15 / 50,-5 / 50,-2 / 50,4 / 50,5 / 50,8 / 50,12 / 50,15 / 50$, 20/50.
5. Find five rational numbers between:
(i) $2 / 3$ and $4 / 5$
(ii) $-3 / 2$ and $5 / 3$
(iii) $1 / 4$ and $1 / 2$

Solution:
(i) $2 / 3$ and $4 / 5$

Let us make the denominators the same, say 60
i.e., $2 / 3$ and $4 / 5$ can be written as:
$2 / 3=(2 \times 20) /(3 \times 20)=40 / 60$
$4 / 5=(4 \times 12) /(5 \times 12)=48 / 60$
Five rational numbers between $2 / 3$ and $4 / 5=$ five rational numbers between $40 / 60$ and $48 / 60$.
Therefore, five rational numbers between $40 / 60$ and $48 / 60=41 / 60,42 / 60,43 / 60,44 / 60,45 / 60$.
(ii) $-3 / 2$ and $5 / 3$

Let us make the denominators the same, say 6
i.e., $-3 / 2$ and $5 / 3$ can be written as:
$-3 / 2=(-3 \times 3) /(2 \times 3)=-9 / 6$
$5 / 3=(5 \times 2) /(3 \times 2)=10 / 6$
Five rational numbers between $-3 / 2$ and $5 / 3=$ five rational numbers between $-9 / 6$ and 10/6
Therefore, five rational numbers between $-9 / 6$ and $10 / 6=-1 / 6,2 / 6,3 / 6,4 / 6,5 / 6$.
(iii) $1 / 4$ and $1 / 2$

Let us make the denominators the same, say 24
i.e., $1 / 4$ and $1 / 2$ can be written as:
$1 / 4=(1 \times 6) /(4 \times 6)=6 / 24$
$1 / 2=(1 \times 12) /(2 \times 12)=12 / 24$
Five rational numbers between $1 / 4$ and $1 / 2=$ five rational numbers between $6 / 24$ and $12 / 24$.
Therefore, five rational numbers between $6 / 24$ and $12 / 24=7 / 24,8 / 24,9 / 24,10 / 24,11 / 24$.

## 6. Write five rational numbers greater than -2.

Solution:
-2 can be written as $-20 / 10$
Hence, we can say that the five rational numbers greater than -2 are
$-10 / 10,-5 / 10,-1 / 10,5 / 10,7 / 10$
7. Find ten rational numbers between $3 / 5$ and $3 / 4$.

Solution:
Let us make the denominators the same, say 80 .
$3 / 5=(3 \times 16) /(5 \times 16)=48 / 80$
$3 / 4=(3 \times 20) /(4 \times 20)=60 / 80$
Ten rational numbers between $3 / 5$ and $3 / 4=$ ten rational numbers between $48 / 80$ and $60 / 80$.
Therefore, ten rational numbers between $48 / 80$ and $60 / 80=49 / 80,50 / 80,51 / 80,52 / 80,54 / 80,55 / 80,56 / 80,57 / 80$, 58/80, 59/80.

