EXERCISE 3.3

1. Given a parallelogram ABCD . Complete each statement along with the definition or property used.

(i) $\mathrm{AD}=$ \qquad (ii) $\angle \mathrm{DCB}=$ \qquad
(iii) $\mathrm{OC}=$ \qquad (iv) $\mathrm{m} \angle \mathrm{DAB}+\mathrm{m} \angle \mathrm{CDA}=$ \qquad
Solution:
(i) $\mathrm{AD}=\mathrm{BC}$ (Opposite sides of a parallelogram are equal)
(ii) $\angle \mathrm{DCB}=\angle \mathrm{DAB}$ (Opposite angles of a parallelogram are equal)
(iii) $\mathrm{OC}=\mathrm{OA}$ (Diagonals of a parallelogram are equal)
(iv) $\mathrm{m} \angle \mathrm{DAB}+\mathrm{m} \angle \mathrm{CDA}=180^{\circ}$
2. Consider the following parallelograms. Find the values of the unknown $\mathbf{x}, \mathbf{y}, \mathbf{z}$

(i)

(a)

(ii)

(iv)

(v)

Solution:
(i)

$\mathrm{y}=100^{\circ}$ (opposite angles of a parallelogram)
$x+100^{\circ}=180^{\circ}$ (adjacent angles of a parallelogram)
$\Rightarrow \mathrm{x}=180^{\circ}-100^{\circ}=80^{\circ}$
$\mathrm{X}=\mathrm{z}=80^{\circ}$ (opposite angles of a parallelogram)
$\therefore, \mathrm{x}=80^{\circ}, \mathrm{y}=100^{\circ}$ and $\mathrm{z}=80^{\circ}$

$50^{\circ}+\mathrm{x}=180^{\circ} \Rightarrow \mathrm{x}=180^{\circ}-50^{\circ}=130^{\circ}$ (adjacent angles of a parallelogram) $\mathrm{x}=\mathrm{y}=130^{\circ}$ (opposite angles of a parallelogram)
$\mathrm{x}=\mathrm{z}=130^{\circ}$ (corresponding angle)
(iii)

$x=90^{\circ}$ (vertical opposite angles)
$x+y+30^{\circ}=180^{\circ}$ (angle sum property of a triangle)
$\Rightarrow 90^{\circ}+\mathrm{y}+30^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{y}=180^{\circ}-120^{\circ}=60^{\circ}$
also, $\mathrm{y}=\mathrm{z}=60^{\circ}$ (alternate angles)
(iv)

$\mathrm{z}=80^{\circ}$ (corresponding angle) $\mathrm{z}=\mathrm{y}=80^{\circ}$ (alternate angles) $\mathrm{x}+\mathrm{y}=180^{\circ}$ (adjacent angles)
$\Rightarrow \mathrm{x}+80^{\circ}=180^{\circ} \Rightarrow \mathrm{x}=180^{\circ}-80^{\circ}=100^{\circ}$
(v)

$x=280$
$\mathrm{y}=112 \mathrm{oz}=28 \mathrm{o}$
3. Can a quadrilateral ABCD be a parallelogram if (i) $\angle \mathrm{D}+\angle \mathrm{B}=18 \mathbf{1 0}^{\circ}$?
(ii) $\mathrm{AB}=\mathrm{DC}=8 \mathrm{~cm}, \mathrm{AD}=4 \mathrm{~cm}$ and $\mathrm{BC}=4.4 \mathrm{~cm}$?
(iii) $\angle A=70^{\circ}$ and $\angle C=65^{\circ}$?

Solution:
(i) Yes, a quadrilateral ABCD can be a parallelogram if $\angle \mathrm{D}+\angle \mathrm{B}=180^{\circ}$ but it should also fulfil some conditions, which are:
(a) The sum of the adjacent angles should be 180°.
(b) Opposite angles must be equal.
(ii) No, opposite sides should be of the same length. Here, $A D \neq B C$
(iii) No, opposite angles should be of the same measures. $\angle \mathrm{A} \neq \angle \mathrm{C}$
4. Draw a rough figure of a quadrilateral that is not a parallelogram but has exactly two opposite angles of equal measure.

Solution:

ABCD is a figure of quadrilateral that is not a parallelogram but has exactly two opposite angles, that is, $\angle \mathrm{B}=\angle \mathrm{D}$ of equal measure. It is not a parallelogram because $\angle \mathrm{A} \neq \angle \mathrm{C}$.
5. The measures of two adjacent angles of a parallelogram are in the ratio $3: 2$. Find the measure of each of the angles of the parallelogram.

Solution:

Let the measures of two adjacent angles $\angle \mathrm{A}$ and $\angle \mathrm{B}$ be 3 x and 2 x , respectively in
parallelogram ABCD .
$\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
$\Rightarrow 3 \mathrm{x}+2 \mathrm{x}=180^{\circ}$
$\Rightarrow 5 \mathrm{x}=180^{\circ}$
$\Rightarrow \mathrm{x}=36^{\circ}$

We know that opposite sides of a parallelogram are equal.
$\angle \mathrm{A}=\angle \mathrm{C}=3 \mathrm{x}=3 \times 36^{\circ}=108^{\circ}$
$\angle \mathrm{B}=\angle \mathrm{D}=2 \mathrm{x}=2 \times 36^{\circ}=72^{\circ}$
6. Two adjacent angles of a parallelogram have equal measure. Find the measure of each of the angles of the parallelogram.

Solution:

Let ABCD be a parallelogram.
Sum of adjacent angles of a parallelogram $=180^{\circ}$
$\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{~A}=180^{\circ}$
$\Rightarrow \angle \mathrm{A}=90^{\circ}$
also, $90^{\circ}+\angle B=180^{\circ}$
$\Rightarrow \angle B=180^{\circ}-90^{\circ}=90^{\circ}$
$\angle \mathrm{A}=\angle \mathrm{C}=90^{\circ}$
$\angle \mathrm{B}=\angle \mathrm{D}=90$
\circ
7. The adjacent figure HOPE is a parallelogram. Find the angle measures x, y and z. State the properties you use to find them.

Solution:
$y=40^{\circ}$ (alternate interior angle)
$\angle \mathrm{P}=70^{\circ}$ (alternate interior angle)
$\angle \mathrm{P}=\angle \mathrm{H}=70^{\circ}$ (opposite angles of a parallelogram)
$\mathrm{z}=\angle \mathrm{H}-40^{\circ}=70^{\circ}-40^{\circ}=30^{\circ}$
$\angle \mathrm{H}+\mathrm{x}=180^{\circ}$
$\Rightarrow 70^{\circ}+\mathrm{x}=180^{\circ}$
$\Rightarrow \mathrm{x}=180^{\circ}-70^{\circ}=110^{\circ}$
8. The following figures GUNS and RUNS are parallelograms. Find x and y. (Lengths are in cm)
(i)

(ii)

Solution:
(i) $\mathrm{SG}=\mathrm{NU}$ and $\mathrm{SN}=\mathrm{GU}$ (opposite sides of a parallelogram are equal) $3 \mathrm{x}=18$
$x=18 / 3$
$\Rightarrow \mathrm{x}=6$
$3 y-1=26$
$\Rightarrow 3 y=26+1$
$\Rightarrow \mathrm{y}=27 / 3=9$
$x=6$ and $y=9$
(ii) $20=y+7$ and $16=x+y$ (diagonals of a parallelogram bisect each other) $y+7=20$
$\Rightarrow \mathrm{y}=20-7=13$ and,
$x+y=16$
$\Rightarrow \mathrm{x}+13=16$
$\Rightarrow \mathrm{x}=16-13=3$
$x=3$ and $y=13$
9. In the above figure both RISK and CLUE are parallelograms. Find the value of \mathbf{x}.

Solution:
$\angle \mathrm{K}+\angle \mathrm{R}=180^{\circ}$ (adjacent angles of a parallelogram are supplementary)
$\Rightarrow 120^{\circ}+\angle \mathrm{R}=180^{\circ}$
$\Rightarrow \angle \mathrm{R}=180^{\circ}-120^{\circ}=60^{\circ}$
also, $\angle \mathrm{R}=\angle \mathrm{SIL}$ (corresponding angles)
$\Rightarrow \angle \mathrm{SIL}=60^{\circ}$
also, $\angle \mathrm{ECR}=\angle \mathrm{L}=70^{\circ}$ (corresponding angles) $\mathrm{x}+60^{\circ}+70^{\circ}=180^{\circ}$ (angle sum of a triangle)
$\Rightarrow \mathrm{x}+130^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{x}=180^{\circ}-130^{\circ}=50^{\circ}$
10. Explain how this figure is a trapezium. Which of its two sides are parallel? (Fig 3.32)

Fig 3.32

Solution:

When a transversal line intersects two lines in such a way that the sum of the adjacent angles on the same side of transversal is 180°, then the lines are parallel to each other. Here, $\angle \mathrm{M}+\angle \mathrm{L}=100^{\circ}+80^{\circ}=180^{\circ}$

Thus, MN || LK
As the quadrilateral KLMN has one pair of parallel lines, it is a trapezium. MN and LK are parallel lines.
11. Find $\mathrm{m} \angle \mathrm{C}$ in Fig 3.33 if $\mathrm{AB} \| \mathrm{DC}$.

Fig 3.33

Solution:
$\mathrm{m} \angle \mathrm{C}+\mathrm{m} \angle \mathrm{B}=180^{\circ}$ (angles on the same side of transversal)
$\Rightarrow \mathrm{m} \angle \mathrm{C}+120^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{m} \angle \mathrm{C}=180^{\circ}-120^{\circ}=60^{\circ}$
12. Find the measure of $\angle P$ and $\angle S$ if $S P \| R Q$? in Fig 3.34. (If you find $m \angle R$, is there more than one method to find $\mathbf{m} \angle P$?)

Solution:
$\angle \mathrm{P}+\angle \mathrm{Q}=180^{\circ}$ (angles on the same side of transversal)
$\Rightarrow \angle \mathrm{P}+130^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{P}=180^{\circ}-130^{\circ}=50^{\circ}$
also, $\angle \mathrm{R}+\angle \mathrm{S}=180^{\circ}$ (angles on the same side of transversal)
$\Rightarrow 90^{\circ}+\angle \mathrm{S}=180^{\circ}$
$\Rightarrow \angle \mathrm{S}=180^{\circ}-90^{\circ}=90^{\circ}$
Thus, $\angle \mathrm{P}=50^{\circ}$ and $\angle \mathrm{S}=90^{\circ}$
Yes, there are more than one method to find $\mathrm{m} \angle \mathrm{P}$.
PQRS is a quadrilateral. Sum of measures of all angles is 360°.
Since, we know the measurement of $\angle \mathrm{Q}, \angle \mathrm{R}$ and $\angle \mathrm{S}$.
$\angle \mathrm{Q}=130^{\circ}, \angle \mathrm{R}=90^{\circ}$ and $\angle \mathrm{S}=90^{\circ}$
$\angle \mathrm{P}+130^{\circ}+90^{\circ}+90^{\circ}=360^{\circ}$
$\Rightarrow \angle \mathrm{P}+310^{\circ}=360^{\circ}$

NCERT Solutions for Class 8 Maths Chapter 3 Understanding Quadrilaterals
$\Rightarrow \angle \mathrm{P}=360^{\circ}-310^{\circ}=50^{\circ}$

