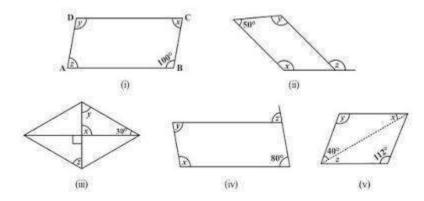


EXERCISE 3.3 PAGE NO: 50


1. Given a parallelogram ABCD. Complete each statement along with the definition or property used.

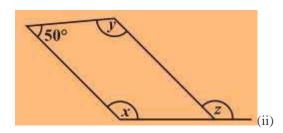
- (i) AD = (ii) ∠DCB =
- (iii) $OC = \dots$ (iv) $m \angle DAB + m \angle CDA = \dots$

Solution:

- (i) AD = BC (Opposite sides of a parallelogram are equal)
- (ii) $\angle DCB = \angle DAB$ (Opposite angles of a parallelogram are equal)
- (iii) OC = OA (Diagonals of a parallelogram are equal)
- (iv) m $\angle DAB + m \angle CDA = 180^{\circ}$
- 2. Consider the following parallelograms. Find the values of the unknown x,y,z

Solution:

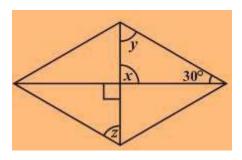
(i)


 $y = 100^{\circ}$ (opposite angles of a parallelogram)

 $x + 100^{\circ} = 180^{\circ}$ (adjacent angles of a parallelogram)

$$\Rightarrow$$
 x = 180° - 100° = 80°

 $x = z = 80^{\circ}$ (opposite angles of a parallelogram)


$$\therefore$$
, $x = 80^{\circ}$, $y = 100^{\circ}$ and $z = 80^{\circ}$

 $50^{\circ} + x = 180^{\circ} \Rightarrow x = 180^{\circ} - 50^{\circ} = 130^{\circ}$ (adjacent angles of a parallelogram) $x = y = 130^{\circ}$ (opposite angles of a parallelogram)

 $x = z = 130^{\circ}$ (corresponding angle)

(iii)

 $x = 90^{\circ}$ (vertical opposite angles)

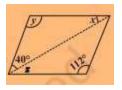
 $x + y + 30^{\circ} = 180^{\circ}$ (angle sum property of a triangle)

$$\Rightarrow 90^{\circ} + y + 30^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 y = 180° - 120° = 60°

also, $y = z = 60^{\circ}$ (alternate angles)

(iv)


NCERT Solutions for Class 8 Maths Chapter 3 – Understanding Quadrilaterals

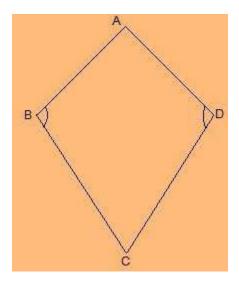
 $z = 80^{\circ}$ (corresponding angle) $z = y = 80^{\circ}$ (alternate angles) $x + y = 180^{\circ}$ (adjacent angles)

$$\Rightarrow$$
 x + 80° = 180° \Rightarrow x = 180° - 80° = 100°

(v)

x=280

$$y = 112o z = 28o$$


- 3. Can a quadrilateral ABCD be a parallelogram if (i) $\angle D + \angle B = 180^{\circ}$?
- (ii) AB = DC = 8 cm, AD = 4 cm and BC = 4.4 cm?

(iii)
$$\angle A = 70^{\circ}$$
 and $\angle C = 65^{\circ}$?

Solution:

- (i) Yes, a quadrilateral ABCD can be a parallelogram if $\angle D + \angle B = 180^{\circ}$ but it should also fulfil some conditions, which are:
- (a) The sum of the adjacent angles should be 180°.
- (b) Opposite angles must be equal.
- (ii) No, opposite sides should be of the same length. Here, $AD \neq BC$
- (iii) No, opposite angles should be of the same measures. $\angle A \neq \angle C$
- 4. Draw a rough figure of a quadrilateral that is not a parallelogram but has exactly two opposite angles of equal measure.

Solution:

ABCD is a figure of quadrilateral that is not a parallelogram but has exactly two opposite angles, that is, $\angle B = \angle D$ of equal measure. It is not a parallelogram because $\angle A \neq \angle C$.

5. The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.

Solution:

Let the measures of two adjacent angles $\angle A$ and $\angle B$ be 3x and 2x, respectively in

parallelogram ABCD.

$$\angle A + \angle B = 180^{\circ}$$

$$\Rightarrow$$
 3x + 2x = 180°

$$\Rightarrow 5x = 180^{\circ}$$

$$\Rightarrow x = 36^{\circ}$$

We know that opposite sides of a parallelogram are equal.

$$\angle A = \angle C = 3x = 3 \times 36^{\circ} = 108^{\circ}$$

$$\angle B = \angle D = 2x = 2 \times 36^{\circ} = 72^{\circ}$$

6. Two adjacent angles of a parallelogram have equal measure. Find the measure of each of the angles of the parallelogram.

Solution:

Let ABCD be a parallelogram.

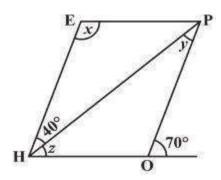
Sum of adjacent angles of a parallelogram = 180°

$$\angle A + \angle B = 180^{\circ}$$

$$\Rightarrow 2\angle A = 180^{\circ}$$

$$\Rightarrow \angle A = 90^{\circ}$$

also,
$$90^{\circ} + \angle B = 180^{\circ}$$


$$\Rightarrow$$
 $\angle B = 180^{\circ} - 90^{\circ} = 90^{\circ}$

$$\angle A = \angle C = 90^{\circ}$$

$$\angle B = \angle D = 90$$

0

7. The adjacent figure HOPE is a parallelogram. Find the angle measures x, y and z. State the properties you use to find them.

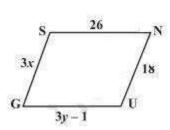
Solution:

 $y = 40^{\circ}$ (alternate interior angle)

 $\angle P = 70^{\circ}$ (alternate interior angle)

 $\angle P = \angle H = 70^{\circ}$ (opposite angles of a parallelogram)

$$z = \angle H - 40^{\circ} = 70^{\circ} - 40^{\circ} = 30^{\circ}$$


$$\angle H + x = 180^{\circ}$$

$$\Rightarrow 70^{\circ} + x = 180^{\circ}$$

$$\Rightarrow$$
 x = 180° - 70° = 110°

8. The following figures GUNS and RUNS are parallelograms. Find x and y. (Lengths are in cm)

(i)

(ii) S 20 XY N

Solution:

(i) SG = NU and SN = GU (opposite sides of a parallelogram are equal) 3x = 18

$$x = 18/3$$

$$\Rightarrow$$
 x =6

$$3y - 1 = 26$$

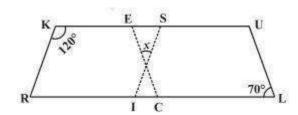
$$\Rightarrow$$
 3y = 26 + 1

$$\Rightarrow$$
 y = 27/3=9

$$x = 6$$
 and $y = 9$

(ii) 20 = y + 7 and 16 = x + y (diagonals of a parallelogram bisect each other) y + 7 = 20

$$\Rightarrow$$
 y = 20 – 7 = 13 and,


$$x + y = 16$$

$$\Rightarrow$$
 x + 13 = 16

$$\Rightarrow$$
 x = 16 - 13 = 3

$$x = 3$$
 and $y = 13$

9. In the above figure both RISK and CLUE are parallelograms. Find the value of x.

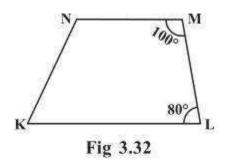
Solution:

 $\angle K + \angle R = 180^{\circ}$ (adjacent angles of a parallelogram are supplementary)

$$\Rightarrow 120^{\circ} + \angle R = 180^{\circ}$$

$$\Rightarrow$$
 $\angle R = 180^{\circ} - 120^{\circ} = 60^{\circ}$

also, $\angle R = \angle SIL$ (corresponding angles)

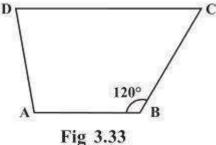

$$\Rightarrow \angle SIL = 60^{\circ}$$

also, $\angle ECR = \angle L = 70^{\circ}$ (corresponding angles) $x + 60^{\circ} + 70^{\circ} = 180^{\circ}$ (angle sum of a triangle)

$$\Rightarrow$$
 x + 130° = 180°

$$\Rightarrow$$
 x = 180° - 130° = 50°

10. Explain how this figure is a trapezium. Which of its two sides are parallel? (Fig 3.32)

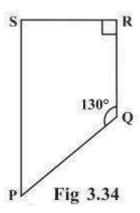

Solution:

When a transversal line intersects two lines in such a way that the sum of the adjacent angles on the same side of transversal is 180° , then the lines are parallel to each other. Here, $\angle M + \angle L = 100^{\circ} + 80^{\circ} = 180^{\circ}$

Thus, MN || LK

As the quadrilateral KLMN has one pair of parallel lines, it is a trapezium. MN and LK are parallel lines.

11. Find m∠C in Fig 3.33 if AB || DC.


Solution:

 $m\angle C + m\angle B = 180^{\circ}$ (angles on the same side of transversal)

$$\Rightarrow$$
 m \angle C + 120° = 180°

$$\Rightarrow$$
 m \angle C = 180°- 120° = 60°

12. Find the measure of $\angle P$ and $\angle S$ if $SP \parallel RQ$? in Fig 3.34. (If you find $m \angle R$, is there more than one method to find $m \angle P$?)

Solution:

 $\angle P + \angle Q = 180^{\circ}$ (angles on the same side of transversal)

$$\Rightarrow$$
 $\angle P + 130^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle P = 180^{\circ} - 130^{\circ} = 50^{\circ}$

also, $\angle R + \angle S = 180^{\circ}$ (angles on the same side of transversal)

$$\Rightarrow 90^{\circ} + \angle S = 180^{\circ}$$

$$\Rightarrow$$
 $\angle S = 180^{\circ} - 90^{\circ} = 90^{\circ}$

Thus,
$$\angle P = 50^{\circ}$$
 and $\angle S = 90^{\circ}$

Yes, there are more than one method to find $m \angle P$.

PQRS is a quadrilateral. Sum of measures of all angles is 360° .

Since, we know the measurement of $\angle Q$, $\angle R$ and $\angle S$.

$$\angle Q = 130^{\circ}$$
, $\angle R = 90^{\circ}$ and $\angle S = 90^{\circ}$

$$\angle P + 130^{\circ} + 90^{\circ} + 90^{\circ} = 360^{\circ}$$

$$\Rightarrow$$
 $\angle P + 310^{\circ} = 360^{\circ}$

NCERT Solutions for Class 8 Maths Chapter 3 – Understanding Quadrilaterals

 \Rightarrow $\angle P = 360^{\circ} - 310^{\circ} = 50^{\circ}$