EXERCISE 4.1

1. Construct the following quadrilaterals.
(i) Quadrilateral $\mathrm{ABCD} \mathrm{AB}=4.5 \mathrm{~cm}$
$\mathrm{BC}=5.5 \mathrm{~cm}$
$\mathrm{CD}=\mathbf{4} \mathrm{cm} \mathrm{AD}=\mathbf{6 c m ~ A C = 7} \mathrm{cm}$
Solution:

The rough sketch of the quadrilateral ABCD can be drawn as follows.
(1) $\triangle \mathrm{ABC}$ can be constructed by using the given measurements as follows.

(2) Vertex D is 6 cm away from vertex A. Therefore, while taking A as the centre, draw an arc of radius 6 cm .

(3) Taking C as the centre, draw an arc of radius 4 cm , cutting the previous arc at point D . Joint D to A and C .

ABCD is the required quadrilateral.
(ii) Quadrilateral JUMP JU $=3.5 \mathrm{~cm}$
$\mathrm{UM}=\mathbf{4} \mathrm{cm} \mathrm{MP}=5 \mathrm{~cm} \mathrm{PJ}=4.5 \mathrm{~cm}$ PU $=6.5 \mathrm{~cm}$

Solution:

The rough sketch of the quadrilateral JUMP can be drawn as follows.

(1) Δ JUP can be constructed by using the given measurements as follows.

(2) Vertex M is 5 cm away from vertex P and 4 cm away from vertex U . Taking P and U as centres, draw arcs of radii 5 cm and 4 cm , respectively. Let the point of intersection be M.

(3) Join M to P and U.

JUMP is the required quadrilateral.
(iii) Parallelogram MORE
$O R=6 \mathrm{~cm}$

Solution:
$\mathrm{RE}=4.5 \mathrm{~cm}$
$\mathrm{EO}=7.5$

We know that opposite sides of a parallelogram are equal in length, and also, these are parallel to each other.
i.e., $\mathrm{ME}=\mathrm{OR}, \mathrm{MO}=\mathrm{ER}$

The rough sketch of the parallelogram MORE can be drawn as follows.
(1) Δ EOR can be constructed by using the given measurements as follows.

(2) Vertex M is 4.5 cm away from vertex O and 6 cm away from vertex E . Therefore, while taking O and E as centres, draw arcs of 4.5 cm radius and 6 cm radius, respectively. These will intersect each other at point M .

(3) Join M to O and E.

MORE is the required parallelogram.
(iv) Rhombus BEST
$\mathrm{BE}=4.5 \mathrm{~cm}$
$E T=6 \mathrm{~cm}$

Solution:

We know that all sides of a rhombus are of the same measure. Hence, $\mathrm{BE}=\mathrm{ES}=\mathrm{ST}=\mathrm{TB}$

The rough sketch of the rhombus BEST can be drawn as follows.

(1) Δ BET can be constructed by using the given measurements as follows.
(2) Vertex S is 4.5 cm away from vertex E and also from vertex T . Therefore, while taking E and T as centres, draw arcs of 4.5 cm radius, which will intersect each other at point S.

(3) Join S to E and T.

NCERT Solution For Class 8 Maths Chapter 4 Image

BEST is the required rhombus.

