

EXERCISE 4.1 PAGE NO: 60

- 1. Construct the following quadrilaterals.
- (i) Quadrilateral ABCD AB = 4.5 cm

BC = 5.5 cm

CD = 4 cm AD = 6 cm AC = 7 cm

Solution:

The rough sketch of the quadrilateral ABCD can be drawn as follows.

(1) \triangle ABC can be constructed by using the given measurements as follows.

(2) Vertex D is 6 cm away from vertex A. Therefore, while taking A as the centre, draw an arc of radius 6 cm.

(3) Taking C as the centre, draw an arc of radius 4 cm, cutting the previous arc at point D. Joint D to A and C.

ABCD is the required quadrilateral.

(ii) Quadrilateral JUMP JU = 3.5 cm

$$UM = 4 \text{ cm MP} = 5 \text{ cm PJ} = 4.5 \text{ cm PU} = 6.5 \text{ cm}$$

Solution:

The rough sketch of the quadrilateral JUMP can be drawn as follows.

(1) Δ JUP can be constructed by using the given measurements as follows.

(2) Vertex M is 5 cm away from vertex P and 4 cm away from vertex U. Taking P and U as centres, draw arcs of radii 5 cm and 4 cm, respectively. Let the point of intersection be M.

(3) Join M to P and U.

JUMP is the required quadrilateral.

(iii) Parallelogram MORE

OR = 6 cm

Solution:

$$RE = 4.5 \text{ cm}$$

$$EO = 7.5$$

We know that opposite sides of a parallelogram are equal in length, and also, these are parallel to each other.

i.e.,
$$ME = OR$$
, $MO = ER$

The rough sketch of the parallelogram MORE can be drawn as follows.

(1) \triangle EOR can be constructed by using the given measurements as follows.

(2) Vertex M is 4.5 cm away from vertex O and 6 cm away from vertex E. Therefore, while taking O and E as centres, draw arcs of 4.5 cm radius and 6 cm radius, respectively. These will intersect each other at point M.

(3) Join M to O and E.

MORE is the required parallelogram.

(iv) Rhombus BEST

BE = 4.5 cm

ET = 6 cm

Solution:

We know that all sides of a rhombus are of the same measure. Hence, BE = ES = ST = TB

The rough sketch of the rhombus BEST can be drawn as follows.

(1) \triangle BET can be constructed by using the given measurements as follows.

(2) Vertex S is 4.5 cm away from vertex E and also from vertex T. Therefore, while taking E and T as centres, draw arcs of 4.5 cm radius, which will intersect each other at point S.

(3) Join S to E and T.

NCERT Solution For Class 8 Maths Chapter 4 Image

BEST is the required rhombus.

EXERCISE 4.2 PAGE NO: 62

- 1. Construct the following quadrilaterals.
- (i) Quadrilateral LIFT LI = 4 cm

$$IF = 3 \text{ cm } TL = 2.5 \text{ cm } LF = 4.5 \text{ cm}$$

IT = 4 cm

Solution:

A rough sketch of the quadrilateral LIFT can be drawn as follows.

(1) Δ ITL can be constructed by using the given measurements as follows.

(2) Vertex F is 4.5 cm away from vertex L and 3 cm away from vertex I. \therefore while taking L and I as centres, draw arcs of 4.5 cm radius and 3 cm radius, respectively, which will intersect each other at point F.

LIFT is the required quadrilateral.

(ii) Quadrilateral GOLD OL = 7.5 cm

$$GL = 6 \text{ cm } GD = 6 \text{ cm } LD = 5 \text{ cm } OD = 10 \text{ cm}$$

Solution:

The rough sketch of the quadrilateral GOLD can be drawn as follows.

(1) \triangle GDL can be constructed by using the given measurements as follows.

(2) Vertex O is 10 cm away from vertex D and 7.5 cm away from vertex L. Therefore, while taking D and L as centres, draw arcs of 10 cm radius and 7.5 cm radius, respectively. These will intersect each other at point O.

(3) Join O to G and L.

GOLD is the required quadrilateral.

(iii) Rhombus BEND

BN = 5.6 cm

DE = 6.5 cm

Solution:

We know that the diagonals of a rhombus always bisect each other at 90°.

Let us assume that these are intersecting each other at point O in this rhombus. Hence, EO = OD = 3.25 cm

The rough sketch of the rhombus BEND can be drawn as follows.

(1) Draw a line segment BN of 5.6 cm, and also draw its perpendicular bisector. Let it intersect the line segment BN at point O.

(2) Taking O as the centre, draw arcs of 3.25 cm radius to intersect the perpendicular bisector at points D and E.

(3) Join points D and E to points B and N.

BEND is the required quadrilateral.

EXERCISE 4.3 PAGE NO: 64

- 1. Construct the following quadrilaterals.
- (i) Quadrilateral MORE MO = 6 cm

OR = 4.5 cm

 \angle M = 60°

∠O = 105°

∠R = 105°

Solution:

Rough Figure:

- (1) Draw a line segment MO of 6 cm and an angle of 105° at point O. As vertex R is 4.5 cm away from the vertex O, cut a line segment OR of 4.5 cm from this ray.
- (2) Again, draw an angle of 105° at point R.

(3) Draw an angle of 60° at point M. Let this ray meet the previously drawn ray from R at point E.

MORE is the required quadrilateral.

(ii) Quadrilateral PLAN PL = 4 cm

LA = 6.5 cm

∠P = 90°

∠A = 110°

 $\angle N = 85^{\circ}$

Solution:

The sum of the angles of a quadrilateral is 360°. In quadrilateral PLAN,

$$\angle P + \angle L + \angle A + \angle N = 360^{\circ} 90^{\circ} + \angle L + 110^{\circ} + 85^{\circ} = 360^{\circ}$$

$$285^{\circ} + \angle L = 360^{\circ}$$

 $\angle L = 360^{\circ} - 285^{\circ} = 75^{\circ}$

Rough Figure:

(1) Draw a line segment PL of 4 cm and draw an angle of 75° at point L. As vertex A is 6.5 cm away from vertex L, cut a line segment LA of 6.5 cm from this ray.

(2) Again, draw an angle of 110° at point A.

(3) Draw an angle of 90° at point P. This ray will meet the previously drawn ray from A at point N.

PLAN is the required quadrilateral.

(iii) Parallelogram HEAR HE = 5 cm

EA = 6 cm

∠R = 85°

Solution:

Rough Figure:

(1) Draw a line segment HE of 5 cm and an angle of 85° at point E. As vertex A is 6 cm away from vertex E, cut a line segment EA of 6 cm from this ray.

(2) Vertex R is 6 cm and 5 cm away from vertex H and A, respectively. By taking radii as 6 cm and 5 cm, draw arcs from points H and A, respectively. These will intersect each other at point R.

(3) Join R to H and A.

HEAR is the required quadrilateral.

(iv) Rectangle OKAY

OK = 7 cm KA = 5 cm

Solution:

Rough Figure:

(1) Draw a line segment OK of 7 cm and an angle of 90° at point K. As vertex A is 5 cm away from vertex K, cut a line segment KA of 5 cm from this ray.

(2) Vertex Y is 5 cm and 7 cm away from vertex O and A, respectively. By taking

radii as 5 cm and 7 cm, draw arcs from points O and A, respectively. These will intersect each other at point Y.

(3) Join Y to A and O.

OKAY is the required quadrilateral.

EXERCISE 4.4 PAGE NO: 67

- 1. Construct the following quadrilaterals,
- (i) Quadrilateral DEAR DE = 4 cm

EA = 5 cm AR

= 4.5 cm

 $\angle E = 60^{\circ}$

 $\angle A = 90^{\circ}$

Solution:

Rough Figure:

(1) Draw a line segment DE of 4 cm and an angle of 60° at point E. As vertex A is 5 cm away from vertex E, cut a line segment EA of 5 cm from this ray.

(2) Again, draw an angle of 90° at point A. As vertex R is 4.5 cm away from vertex A, cut a line segment RA of 4.5 cm from this ray.

DEAR is the required quadrilateral.

(ii) Quadrilateral $TRUE\ TR = 3.5\ cm$

RU = 3 cm UE = 4 cm

∠R = 75°

∠U = 120°

Solution:

Rough Figure:

(1) Draw a line segment RU of 3 cm and an angle of 120° at point U. As vertex E is 4 cm away from vertex U, cut a line segment UE of 4 cm from this ray.

(2) Next, draw an angle of 75° at point R. As vertex T is 3.5 cm away from vertex R, cut a line segment RT of 3.5 cm from this ray.

(3) Join T to E.

TRUE is the required quadrilateral.

EXERCISE 4.5 PAGE NO: 68

Draw the following:

1. The square READ with RE = 5.1 cm

Solution:

All the sides of a square are of the same measure, and also, all the interior angles of a square are 90° measure. Therefore, the given square READ can be drawn as follows.

Rough Figure:

(1) Draw a line segment RE of 5.1 cm and an angle of 90° at points R and E.

(2) As vertex A and D are 5.1 cm away from vertex E and R, respectively, cut line segments EA and RD, each of 5.1 cm from these rays.

(3) Join D to A.

READ is the required square.

2. A rhombus whose diagonals are 5.2 cm and 6.4 cm long. Solution:

In a rhombus, diagonals bisect each other at 90°. ∴, the given rhombus ABCD can be drawn as follows.

Rough Figure:

(1) Draw a line segment AC of 5.2 cm and draw its perpendicular bisector. Let it intersect the line segment AC at point O.

(2) Draw arcs of 6.4/2 = 3.2 on both sides of this perpendicular bisector. Let the arcs intersect the perpendicular bisector at points B and D.

(3) Join points B and D with points A and C.

ABCD is the required rhombus.

3. A rectangle with adjacent sides of length 5 cm and 4 cm. Solution:

Opposite sides of a rectangle have lengths of the same measure, and also, all the interior angles of a rectangle are 90° measure. The given rectangle ABCD may be drawn as follows.

Rough figure:

(1) Draw a line segment AB of 5 cm and an angle of 90° at points A and B.

(2) As vertex C and D are 4 cm away from vertex B and A, respectively, cut line segments AD and BC, each of 4 cm, from these rays.

(3) Join D to C.

ABCD is the required rectangle.

4. A parallelogram OKAY where OK = 5.5 cm and KA = 4.2 cm. Solution:

Opposite sides of a parallelogram are equal and parallel to each other. The given parallelogram OKAY can be drawn as follows.

Rough Figure:

(1) Draw a line segment OK of 5.5 cm and a ray at point K at a convenient angle.

(2) Draw a ray at point O parallel to the ray at K. As the vertices A and Y are 4.2 cm away from the vertices K and O, respectively, cut line segments KA and OY, each of 4.2 cm, from these rays.

(3) Join Y to A.

OKAY is the required rectangle.