EXERCISE 4.1

1. Construct the following quadrilaterals.
(i) Quadrilateral $\mathrm{ABCD} \mathrm{AB}=4.5 \mathrm{~cm}$
$\mathrm{BC}=5.5 \mathrm{~cm}$
$\mathrm{CD}=\mathbf{4} \mathrm{cm} \mathrm{AD}=\mathbf{6 c m ~ A C = 7} \mathrm{cm}$
Solution:

The rough sketch of the quadrilateral ABCD can be drawn as follows.
(1) $\triangle \mathrm{ABC}$ can be constructed by using the given measurements as follows.

(2) Vertex D is 6 cm away from vertex A . Therefore, while taking A as the centre, draw an arc of radius 6 cm .

(3) Taking C as the centre, draw an arc of radius 4 cm , cutting the previous arc at point D . Joint D to A and C .

ABCD is the required quadrilateral.
(ii) Quadrilateral JUMP JU $=3.5 \mathrm{~cm}$
$\mathrm{UM}=\mathbf{4} \mathrm{cm} \mathrm{MP}=5 \mathrm{~cm} \mathrm{PJ}=4.5 \mathrm{~cm}$ PU $=6.5 \mathrm{~cm}$

Solution:

The rough sketch of the quadrilateral JUMP can be drawn as follows.

(1) Δ JUP can be constructed by using the given measurements as follows.

(2) Vertex M is 5 cm away from vertex P and 4 cm away from vertex U . Taking P and U as centres, draw arcs of radii 5 cm and 4 cm , respectively. Let the point of intersection be M .

(3) Join M to P and U.

JUMP is the required quadrilateral.
(iii) Parallelogram MORE
$O R=6 \mathrm{~cm}$

Solution:
$\mathrm{RE}=4.5 \mathrm{~cm}$
$\mathrm{EO}=7.5$

We know that opposite sides of a parallelogram are equal in length, and also, these are parallel to each other.
i.e., $\mathrm{ME}=\mathrm{OR}, \mathrm{MO}=\mathrm{ER}$

The rough sketch of the parallelogram MORE can be drawn as follows.
(1) Δ EOR can be constructed by using the given measurements as follows.

(2) Vertex M is 4.5 cm away from vertex O and 6 cm away from vertex E . Therefore, while taking O and E as centres, draw arcs of 4.5 cm radius and 6 cm radius, respectively. These will intersect each other at point M .

(3) Join M to O and E.

MORE is the required parallelogram.
(iv) Rhombus BEST
$\mathrm{BE}=4.5 \mathrm{~cm}$
$E T=6 \mathrm{~cm}$

Solution:

We know that all sides of a rhombus are of the same measure. Hence, $\mathrm{BE}=\mathrm{ES}=\mathrm{ST}=\mathrm{TB}$

The rough sketch of the rhombus BEST can be drawn as follows.

(1) Δ BET can be constructed by using the given measurements as follows.
(2) Vertex S is 4.5 cm away from vertex E and also from vertex T . Therefore, while taking E and T as centres, draw arcs of 4.5 cm radius, which will intersect each other at point S.

(3) Join S to E and T.

NCERT Solution For Class 8 Maths Chapter 4 Image

BEST is the required rhombus.

EXERCISE 4.2

1. Construct the following quadrilaterals.
(i) Quadrilateral LIFT LI $=\mathbf{4} \mathbf{~ c m}$
$\mathrm{IF}=\mathbf{3 \mathrm { cm } \mathrm { TL }}=2.5 \mathrm{~cm} \mathrm{LF}=4.5 \mathrm{~cm}$
IT $=4 \mathrm{~cm}$

Solution:

A rough sketch of the quadrilateral LIFT can be drawn as follows.

(1) Δ ITL can be constructed by using the given measurements as follows.

(2) Vertex F is 4.5 cm away from vertex L and 3 cm away from vertex I . \therefore while taking L and I as centres, draw arcs of 4.5 cm radius and 3 cm radius, respectively, which will intersect each other at point F .

$L_{(3)}$ Join F to T and F to I.
LIFT is the required quadrilateral.
(ii) Quadrilateral GOLD OL $=7.5 \mathrm{~cm}$
$\mathrm{GL}=\mathbf{6} \mathrm{cm}$ GD $=\mathbf{6} \mathrm{cm} \mathrm{LD}=5 \mathrm{~cm}$ OD $=10 \mathrm{~cm}$

Solution:

The rough sketch of the quadrilateral GOLD can be drawn as follows.

(1) Δ GDL can be constructed by using the given measurements as follows.

(2) Vertex O is 10 cm away from vertex D and 7.5 cm away from vertex L . Therefore, while taking D and L as centres, draw arcs of 10 cm radius and 7.5 cm radius, respectively. These will intersect each other at point O .

(3) Join O to G and L.

GOLD is the required quadrilateral.
(iii) Rhombus BEND
$\mathrm{BN}=5.6 \mathrm{~cm}$
$\mathrm{DE}=6.5 \mathrm{~cm}$

Solution:

We know that the diagonals of a rhombus always bisect each other at 90°.
Let us assume that these are intersecting each other at point O in this rhombus. Hence, $\mathrm{EO}=\mathrm{OD}=3.25 \mathrm{~cm}$
The rough sketch of the rhombus BEND can be drawn as follows.

(1) Draw a line segment BN of 5.6 cm , and also draw its perpendicular bisector. Let it intersect the line segment BN at point O .

(2) Taking O as the centre, draw arcs of 3.25 cm radius to intersect the perpendicular bisector at points D and E .

(3) Join points D and E to points B and N.

BEND is the required quadrilateral.

EXERCISE 4.3

1. Construct the following quadrilaterals.
(i) Quadrilateral MORE MO $=\mathbf{6} \mathrm{cm}$
$\mathrm{OR}=4.5 \mathrm{~cm}$
$\angle M=60^{\circ}$
$\angle O=105^{\circ}$
$\angle R=105^{\circ}$
Solution:
Rough Figure:

(1) Draw a line segment MO of 6 cm and an angle of 105° at point O . As vertex R is 4.5 cm away from the vertex O , cut a line segment OR of 4.5 cm from this ray.
(2) Again, draw an angle of 105° at point R .

(3) Draw an angle of 60° at point M . Let this ray meet the previously drawn ray from R at point E .

MORE is the required quadrilateral.
(ii) Quadrilateral PLAN PL $=4 \mathrm{~cm}$
$\mathrm{LA}=6.5 \mathrm{~cm}$
$\angle \mathrm{P}=90^{\circ}$
$\angle A=110^{\circ}$
$\angle \mathrm{N}=85^{\circ}$
Solution:
The sum of the angles of a quadrilateral is 360°. In quadrilateral PLAN,
$\angle \mathrm{P}+\angle \mathrm{L}+\angle \mathrm{A}+\angle \mathrm{N}=360^{\circ} 90^{\circ}+\angle \mathrm{L}+110^{\circ}+85^{\circ}=360^{\circ}$
$285^{\circ}+\angle \mathrm{L}=360^{\circ}$
$\angle \mathrm{L}=360^{\circ}-285^{\circ}=75^{\circ}$
Rough Figure:

(1) Draw a line segment PL of 4 cm and draw an angle of 75° at point L . As vertex A is 6.5 cm away from vertex L , cut a line segment LA of 6.5 cm from this ray.

(2) Again, draw an angle of 110° at point A.

(3) Draw an angle of 90° at point P . This ray will meet the previously drawn ray from A at point N .

PLAN is the required quadrilateral.
(iii) Parallelogram HEAR HE $=5 \mathrm{~cm}$

EA $=\mathbf{6 c m}$
$\angle R=85^{\circ}$

Solution:

Rough Figure:

(1) Draw a line segment HE of 5 cm and an angle of 85° at point E . As vertex A is 6 cm away from vertex E , cut a line segment EA of 6 cm from this ray.

(2) Vertex R is 6 cm and 5 cm away from vertex H and A , respectively. By taking radii as 6 cm and 5 cm , draw arcs from points H and A, respectively. These will intersect each other at point R.

(3) Join R to H and A .

HEAR is the required quadrilateral.
(iv) Rectangle OKAY
$\mathrm{OK}=\mathbf{7} \mathbf{~ c m ~ K A ~}=\mathbf{5} \mathbf{~ c m}$
Solution:
Rough Figure:

(1) Draw a line segment OK of 7 cm and an angle of 90° at point K . As vertex A is 5 cm away from vertex K , cut a line segment KA of 5 cm from this ray.

(2) Vertex Y is 5 cm and 7 cm away from vertex O and A, respectively. By taking
radii as 5 cm and 7 cm , draw arcs from points O and A , respectively. These will intersect each other at point Y .

(3) Join Y to A and O.

OKAY is the required quadrilateral.

EXERCISE 4.4

1. Construct the following quadrilaterals,
(i) Quadrilateral DEAR DE $=4 \mathrm{~cm}$

EA $=\mathbf{5} \mathbf{c m}$ AR
$=4.5 \mathrm{~cm}$
$\angle \mathrm{E}=60^{\circ}$
$\angle A=90^{\circ}$

Solution:

Rough Figure:

(1) Draw a line segment DE of 4 cm and an angle of 60° at point E . As vertex A is 5 cm away from vertex E , cut a line segment EA of 5 cm from this ray.

(2) Again, draw an angle of 90° at point A. As vertex R is 4.5 cm away from vertex A, cut a line segment RA of 4.5 cm from this ray.

(3) Join D to R.

DEAR is the required quadrilateral.
(ii) Quadrilateral TRUE TR $=3.5 \mathrm{~cm}$
$\mathrm{RU}=3 \mathrm{~cm} \mathrm{UE}=4 \mathrm{~cm}$
$\angle R=75^{\circ}$
$\angle \mathrm{U}=120^{\circ}$
Solution:
Rough Figure:

(1) Draw a line segment $R U$ of 3 cm and an angle of 120° at point U. As vertex E is 4 cm away from vertex U , cut a line segment UE of 4 cm from this ray.

(2) Next, draw an angle of 75° at point R. As vertex T is 3.5 cm away from vertex R, cut a line segment $R T$ of 3.5 cm from this ray.

(3) Join T to E.

TRUE is the required quadrilateral.

EXERCISE 4.5

Draw the following:

1. The square READ with $\mathrm{RE}=5.1 \mathrm{~cm}$

Solution:

All the sides of a square are of the same measure, and also, all the interior angles of a square are 90° measure. Therefore, the given square READ can be drawn as follows.

Rough Figure:
(1) Draw a line segment $R E$ of 5.1 cm and an angle of 90° at points R and E.

(2) As vertex A and D are 5.1 cm away from vertex E and R, respectively, cut line segments EA and RD, each of 5.1 cm from these rays.

(3) Join D to A.

READ is the required square.
2. A rhombus whose diagonals are 5.2 cm and 6.4 cm long. Solution:

In a rhombus, diagonals bisect each other at $90^{\circ} . \therefore$, the given rhombus ABCD can be drawn as follows.

Rough Figure:

(1) Draw a line segment AC of 5.2 cm and draw its perpendicular bisector. Let it intersect the line segment AC at point O.

(2) Draw arcs of $6.4 / 2=3.2$ on both sides of this perpendicular bisector. Let the arcs intersect the perpendicular bisector at points B and D.

(3) Join points B and D with points A and C .

$A B C D$ is the required rhombus.
3. A rectangle with adjacent sides of length 5 cm and 4 cm . Solution:

Opposite sides of a rectangle have lengths of the same measure, and also, all the interior angles of a rectangle are 90° measure. The given rectangle ABCD may be drawn as follows.

Rough figure:

(1) Draw a line segment AB of 5 cm and an angle of 90° at points A and B .

NCERT Solutions for Class 8 Maths Chapter 4 Practical Geometry

(2) As vertex C and D are 4 cm away from vertex B and A, respectively, cut line segments $A D$ and $B C$, each of 4 cm , from these rays.

(3) Join D to C.

ABCD is the required rectangle.
4. A parallelogram OKAY where $O K=5.5 \mathrm{~cm}$ and $\mathrm{KA}=4.2 \mathrm{~cm}$. Solution:

Opposite sides of a parallelogram are equal and parallel to each other. The given parallelogram OKAY can be drawn as follows.

Rough Figure:

(1) Draw a line segment OK of 5.5 cm and a ray at point K at a convenient angle.

(2) Draw a ray at point O parallel to the ray at K . As the vertices A and Y are 4.2 cm away from the vertices K and O , respectively, cut line segments KA and OY, each of 4.2 cm , from these rays.

(3) Join Y to A.

OKAY is the required rectangle.

