Chemistry

SECTION 1 (Maximum Marks: 12)

- This section contains **THREE (03)** guestions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen;

Partial Marks : +2 If three or more options are correct but **ONLY** two options are chosen, both of

which are correct;

Partial Marks : +1 If two or more options are correct but **ONLY** one option is chosen and it is a

correct option:

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks; choosing ONLY (A) and (B) will get +2 marks; choosing ONLY (A) and (D) will get +2 marks; choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option (i.e. the question is unanswered) will get 0 marks; and

choosing any other combination of options will get -2 marks.

- Q.1 The correct statement(s) related to processes involved in the extraction of metals is(are)
 - (A) Roasting of Malachite produces Cuprite.
 - (B) Calcination of Calamine produces Zincite.
 - (C) Copper pyrites is heated with silica in a reverberatory furnace to remove iron.
 - (D) Impure silver is treated with aqueous KCN in the presence of oxygen followed by reduction with zinc metal.

Answer:B, C, D

Q.2 In the following reactions, **P**, **Q**, **R**, and **S** are the major products.

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}(\text{CH}_3)\text{CH}_2\text{CN} & \overbrace{\text{(ii) PhMgBr, then H}_3\text{O}^{\oplus}} \\ \hline \text{Ph-H} & + & \text{CH}_3\text{CCI} & \overbrace{\text{(ii) anhyd. AICI}_3} \\ \hline \text{CH}_3\text{CH}_2\text{CCI} & \overbrace{\text{(ii) PhMgBr, then H}_2\text{O}} \\ \hline \\ \text{CH}_3\text{CH}_2\text{CCI} & \overbrace{\text{(ii) PhMgBr, then H}_2\text{O}} \\ \hline \\ \text{PhCH}_2\text{CHO} & \overbrace{\text{(ii) PhMgBr, then H}_2\text{O}} \\ \hline \\ \hline \\ \text{(ii) PhMgBr, then H}_2\text{O} \\ \hline \\ \hline \\ \text{(iii) HCN} \\ \hline \\ \text{(iv) H}_2\text{SO}_4, \Delta \\ \hline \end{array} \right. \quad \textbf{S}$$

The correct statement(s) about **P**, **Q**, **R**, and **S** is(are)

- (A) Both **P** and **Q** have asymmetric carbon(s).
- (B) Both **Q** and **R** have asymmetric carbon(s).
- (C) Both **P** and **R** have asymmetric carbon(s).
- (D) **P** has asymmetric carbon(s), **S** does **not** have any asymmetric carbon.

Answer: C, D

Q.3 Consider the following reaction scheme and choose the correct option(s) for the major products \mathbf{Q} , \mathbf{R} and \mathbf{S} .

Styrene
$$\begin{array}{c} \underbrace{\text{(i) B}_2\text{H}_6} \\ \hline \text{(ii) NaOH, H}_2\text{O}_2, \text{H}_2\text{O} \end{array} \hspace{0.5cm} \textbf{P} \begin{array}{c} \underbrace{\text{(i) CrO}_3, \text{H}_2\text{SO}_4} \\ \hline \text{(ii) Cl}_2, \text{Red phosphorus} \end{array} \hspace{0.5cm} \textbf{Q} \\ \hline \\ \underbrace{\text{(iii) H}_2\text{O}} \end{array}$$

$$Q$$
 R S

Answer: B

(D)

SECTION 2 (Maximum Marks: 12)

- This section contains **FOUR (04)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If **ONLY** the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

Q.4 In the scheme given below, **X** and **Y**, respectively, are

Metal halide
$$\xrightarrow{\text{aq. NaOH}}$$
 White precipitate (**P**) + Filtrate (**Q**)

$$\begin{array}{c}
\mathbf{P} & \xrightarrow{\text{aq. H}_2 \text{SO}_4,} \\
\mathbf{P} & \xrightarrow{\text{PbO}_2 \text{ (excess)}} \\
& \text{heat} \\
\mathbf{Q} & \xrightarrow{\text{Conc. H}_2 \text{SO}_4} \\
& \text{warm}
\end{array}$$
Y (gives blue-coloration with KI-starch paper)

- (A) CrO₄²⁻ and Br₂
- (B) MnO₄²⁻ and Cl₂
- (C) MnO₄⁻ and Cl₂
- (D) MnSO₄ and HOCl

Answer: C

Q.5 Plotting $1/\Lambda_m$ against $c\Lambda_m$ for aqueous solutions of a monobasic weak acid (HX) resulted in a straight line with y-axis intercept of P and slope of S. The ratio P/S is

 $[\Lambda_{\rm m} = {\rm molar\ conductivity}]$

 $\Lambda_{\rm m}^{\rm o}$ = limiting molar conductivity

c = molar concentration

 $K_a = dissociation constant of HX$

- (A) $K_a \Lambda_m^o$
- (B) $K_a \Lambda_m^o/2$
- (C) 2 $K_a \Lambda_m^o$
- (D) 1 / ($K_a \Lambda_m^o$)

Answer: A

- Q.6 On decreasing the pH from 7 to 2, the solubility of a sparingly soluble salt (MX) of a weak acid (HX) increased from 10^{-4} mol L^{-1} to 10^{-3} mol L^{-1} . The pK_a of HX is
 - (A) 3
 - (B) 4
 - (C) 5
 - (D) 2

Answer: B

Q.7 In the given reaction scheme, $\bf P$ is a phenyl alkyl ether, $\bf Q$ is an aromatic compound; $\bf R$ and $\bf S$ are the major products.

$$P \xrightarrow{HI} Q \xrightarrow{\text{(ii) NaOH}} R \xrightarrow{\text{(ii) (CH}_3CO)_2O} S$$

The correct statement about **S** is

- (A) It primarily inhibits noradrenaline degrading enzymes.
- (B) It inhibits the synthesis of prostaglandin.
- (C) It is a narcotic drug.
- (D) It is *ortho*-acetylbenzoic acid.

Answer: B

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks : 0 In all other cases.

Q.8 The stoichiometric reaction of 516 g of dimethyldichlorosilane with water results in a tetrameric cyclic product **X** in 75% yield. The weight (in g) of **X** obtained is 222.

[Use, molar mass (g mol⁻¹): H = 1, C = 12, O = 16, Si = 28, Cl = 35.5]

Q.9 A gas has a compressibility factor of 0.5 and a molar volume of 0.4 dm³ mol⁻¹ at a temperature of 800 K and pressure \mathbf{x} atm. If it shows ideal gas behaviour at the same temperature and pressure, the molar volume will be \mathbf{y} dm³ mol⁻¹. The value of \mathbf{x}/\mathbf{y} is 100.

[Use: Gas constant, $R = 8 \times 10^{-2} \text{ L atm K}^{-1} \text{ mol}^{-1}$]

Q.10 The plot of $\log k_f$ versus $^1\!/_T$ for a reversible reaction A (g) \rightleftharpoons P (g) is shown.

Pre-exponential factors for the forward and backward reactions are 10^{15} s⁻¹ and 10^{11} s⁻¹, respectively. If the value of $\log K$ for the reaction at 500 K is 6, the value of $\log k_b$ at 250 K is 5.

[K = equilibrium constant of the reaction]

 k_f = rate constant of forward reaction

 k_b = rate constant of backward reaction]

Q.11 One mole of an ideal monoatomic gas undergoes two reversible processes (A \rightarrow B and B \rightarrow C) as shown in the given figure:

 $A \to B$ is an adiabatic process. If the total heat absorbed in the entire process $(A \to B \text{ and } B \to C)$ is $RT_2 \ln 10$, the value of $2 \log V_3$ is $\frac{7}{}$.

[Use, molar heat capacity of the gas at constant pressure, $C_{p,m} = \frac{5}{2}R$]

JEE (Advanced) 2023

Q.12 In a one-litre flask, 6 moles of A undergoes the reaction A (g) \rightleftharpoons P (g). The progress of product formation at two temperatures (in Kelvin), T_1 and T_2 , is shown in the figure:

If $T_1 = 2T_2$ and $\left(\Delta G_2^{\Theta} - \Delta G_1^{\Theta}\right) = RT_2 \ln x$, then the value of x is <u>8</u>.

 $[\Delta G_1^{\Theta} \text{ and } \Delta G_2^{\Theta} \text{ are standard Gibb's free energy change for the reaction at temperatures } T_1 \text{ and } T_2,$ respectively.]

Q.13 The total number of sp^2 hybridised carbon atoms in the major product **P** (a non-heterocyclic compound) of the following reaction is 28.

NC
$$\rightarrow$$
 CN (i) LiAlH₄ (excess), then H₂O \rightarrow P

(ii) Acetophenone (excess)

SECTION 4 (Maximum Marks: 12)

- This section contains **FOUR (04)** Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- **FOUR** options are given in each Multiple Choice Question based on **List-I** and **List-II** and **ONLY ONE** of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

Q.14 Match the reactions (in the given stoichiometry of the reactants) in List-I with one of their products given in List-II and choose the correct option.

List-I

- (P) $P_2O_3 + 3H_2O \rightarrow$
- (Q) $P_4 + 3NaOH + 3H_2O \rightarrow$
- (R) $PCl_5 + CH_3COOH \rightarrow$
- (S) $H_3PO_2 + 2H_2O + 4AgNO_3 \rightarrow$

List-II

- (1) P(O)(OCH₃)Cl₂
- (2) H₃PO₃
- (3) PH₃
- (4) POCl₃
- (5) H₃PO₄
- (A) $P \rightarrow 2$; $Q \rightarrow 3$; $R \rightarrow 1$; $S \rightarrow 5$
- (B) $P \rightarrow 3$; $Q \rightarrow 5$; $R \rightarrow 4$; $S \rightarrow 2$
- (C) $P \rightarrow 5$; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 3$
- (D) $P \rightarrow 2$; $Q \rightarrow 3$; $R \rightarrow 4$; $S \rightarrow 5$

Answer: D

Q.15 Match the electronic configurations in List-I with appropriate metal complex ions in List-II and choose the correct option.

[Atomic Number: Fe = 26, Mn = 25, Co = 27]

List-I

- $(P) \; t_{2g}^6 \, e_g^0$
- (Q) $t_{2g}^3 e_g^2$
- (R) $e^2 t_2^3$
- (S) $t_{2g}^4 e_g^2$
- (A) $P \rightarrow 1$; $Q \rightarrow 4$; $R \rightarrow 2$; $S \rightarrow 3$
- (B) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 4$; $S \rightarrow 5$
- (C) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 1$
- (D) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 4$; $S \rightarrow 1$

Answer: D

List-II

- (1) $[Fe(H_2O)_6]^{2+}$
- (2) $[Mn(H_2O)_6]^{2+}$
- (3) $[Co(NH_3)_6]^{3+}$
- (4) [FeCl₄]
- $(5) [CoCl_4]^{2-}$

Q.16 Match the reactions in List-I with the features of their products in List-II and choose the correct option.

List-I

- $\begin{array}{ccc} \text{(P)} & \text{(-)-1-Bromo-2-ethylpentane} & \underbrace{\text{aq. NaOH}}_{\text{S}_{N}\text{2 reaction}} \\ \end{array}$
- $\begin{array}{c} \text{(Q)} \quad \text{(-)-2-Bromopentane} \\ \quad \text{(single enantiomer)} \end{array} \quad \begin{array}{c} \text{aq. NaOH} \\ \text{S}_{N}\text{2 reaction} \end{array}$
- (R) (-)-3-Bromo-3-methylhexane (single enantiomer) $\frac{\text{aq. NaOH}}{\text{S}_{\text{N}}\text{1 reaction}}$
- (S)

 Me H Me Br
 (single enantiomer)

 aq. NaOH
 S_N1 reaction
- (A) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 3$
- (B) $P \rightarrow 2$; $Q \rightarrow 1$; $R \rightarrow 3$; $S \rightarrow 5$
- (C) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 4$
- (D) $P \rightarrow 2$; $Q \rightarrow 4$; $R \rightarrow 3$; $S \rightarrow 5$

Answer: B

List-II

- (1) Inversion of configuration
- (2) Retention of configuration
- (3) Mixture of enantiomers
- (4) Mixture of structural isomers
- (5) Mixture of diastereomers

Paper 1

Q.17 The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match List-I with List-II and choose the correct option.

List-I

List-II

(2) Toluene
$$(i) \text{ KMnO}_4, \text{ KOH}, \Delta$$

 $(ii) \text{ SOCl}_2$

(3) Benzene
$$\frac{\text{CH}_3\text{CI}}{\text{anhyd. AICI}_3}$$

(4) Aniline
$$\frac{\text{NaNO}_2/\text{HCI}}{273-278 \text{ K}}$$

(5) Phenol
$$Zn, \Delta$$

(A)
$$P \rightarrow 2$$
; $Q \rightarrow 4$; $R \rightarrow 1$; $S \rightarrow 3$

(B)
$$P \rightarrow 1$$
; $Q \rightarrow 3$; $R \rightarrow 5$; $S \rightarrow 2$

(C)
$$P \rightarrow 3$$
; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 4$

(D)
$$P \rightarrow 3$$
; $Q \rightarrow 4$; $R \rightarrow 5$; $S \rightarrow 2$

Answer: D

END OF THE QUESTION PAPER