Mathematics

SECTION 1 (Maximum Marks: 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks: -2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option (i.e. the question is unanswered) will get 0 marks; and choosing any other combination of options will get -2 marks.
Q. $1 \quad$ Let $S=(0,1) \cup(1,2) \cup(3,4)$ and $T=\{0,1,2,3\}$. Then which of the following statements is(are) true?
(A) There are infinitely many functions from S to T
(B) There are infinitely many strictly increasing functions from S to T
(C) The number of continuous functions from S to T is at most 120
(D) Every continuous function from S to T is differentiable

Answer: A, C, D
Q. 2

Let T_{1} and T_{2} be two distinct common tangents to the ellipse $E: \frac{x^{2}}{6}+\frac{y^{2}}{3}=1$ and the parabola $P: y^{2}=12 x$. Suppose that the tangent T_{1} touches P and E at the points A_{1} and A_{2}, respectively and the tangent T_{2} touches P and E at the points A_{4} and A_{3}, respectively. Then which of the following statements is(are) true?
(A) The area of the quadrilateral $A_{1} A_{2} A_{3} A_{4}$ is 35 square units
(B) The area of the quadrilateral $A_{1} A_{2} A_{3} A_{4}$ is 36 square units
(C) The tangents T_{1} and T_{2} meet the x-axis at the point $(-3,0)$
(D) The tangents T_{1} and T_{2} meet the x-axis at the point $(-6,0)$

Answer: A, C
Q. 3

Let $f:[0,1] \rightarrow[0,1]$ be the function defined by $f(x)=\frac{x^{3}}{3}-x^{2}+\frac{5}{9} x+\frac{17}{36}$. Consider the square region $S=[0,1] \times[0,1]$. Let $G=\{(x, y) \in S: y>f(x)\}$ be called the green region and $R=\{(x, y) \in S: y<f(x)\}$ be called the red region. Let $L_{h}=\{(x, h) \in S: x \in[0,1]\}$ be the horizontal line drawn at a height $h \in[0,1]$. Then which of the following statements is(are) true? (A) There exists an $h \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line L_{h} equals the area of the green region below the line L_{h}
(B) There exists an $h \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line L_{h} equals the area of the red region below the line L_{h}
(C) There exists an $h \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line L_{h} equals the area of the red region below the line L_{h}
(D) There exists an $h \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line L_{h} equals the area of the green region below the line L_{h}

Answer: B, C, D

SECTION 2 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.
Q. 4 Let $f:(0,1) \rightarrow \mathbb{R}$ be the function defined as $f(x)=\sqrt{n}$ if $x \in\left[\frac{1}{n+1}, \frac{1}{n}\right)$ where $n \in \mathbb{N}$. Let $g:(0,1) \rightarrow \mathbb{R}$ be a function such that $\int_{x^{2}}^{x} \sqrt{\frac{1-t}{t}} d t<g(x)<2 \sqrt{x}$ for all $x \in(0,1)$. Then $\lim _{x \rightarrow 0} f(x) g(x)$
(A) does NOT exist
(B) is equal to 1
(C) is equal to 2
(D) is equal to 3

Answer: C
Q. 5 Let Q be the cube with the set of vertices $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}, x_{2}, x_{3} \in\{0,1\}\right\}$. Let F be the set of all twelve lines containing the diagonals of the six faces of the cube Q. Let S be the set of all four lines containing the main diagonals of the cube Q; for instance, the line passing through the vertices $(0,0,0)$ and $(1,1,1)$ is in S. For lines ℓ_{1} and ℓ_{2}, let $d\left(\ell_{1}, \ell_{2}\right)$ denote the shortest distance between them. Then the maximum value of $d\left(\ell_{1}, \ell_{2}\right)$, as ℓ_{1} varies over F and ℓ_{2} varies over S, is
(A) $\frac{1}{\sqrt{6}}$
(B) $\frac{1}{\sqrt{8}}$
(C) $\frac{1}{\sqrt{3}}$
(D) $\frac{1}{\sqrt{12}}$

Answer: A
Q. 6

Let $X=\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: \frac{x^{2}}{8}+\frac{y^{2}}{20}<1\right.$ and $\left.y^{2}<5 x\right\}$. Three distinct points P, Q and R are randomly chosen from X. Then the probability that P, Q and R form a triangle whose area is a positive integer, is
(A) $\frac{71}{220}$
(B) $\frac{73}{220}$
(C) $\frac{79}{220}$
(D) $\frac{83}{220}$

Answer: B
Q. $7 \quad$ Let P be a point on the parabola $y^{2}=4 a x$, where $a>0$. The normal to the parabola at P meets the x-axis at a point Q. The area of the triangle $P F Q$, where F is the focus of the parabola, is 120 . If the slope m of the normal and a are both positive integers, then the pair (a, m) is
(A) $(2,3)$
(B) $(1,3)$
(C) $(2,4)$
(D) $(3,4)$

Answer: A

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered; Zero Marks : 0 In all other cases.
Q. 8

Let $\tan ^{-1}(x) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, for $x \in \mathbb{R}$. Then the number of real solutions of the equation $\sqrt{1+\cos (2 x)}=\sqrt{2} \tan ^{-1}(\tan x)$ in the set $\left(-\frac{3 \pi}{2},-\frac{\pi}{2}\right) \cup\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ is equal to \qquad 3 .
Q. 9 Let $n \geq 2$ be a natural number and $f:[0,1] \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)= \begin{cases}n(1-2 n x) & \text { if } 0 \leq x \leq \frac{1}{2 n} \\ 2 n(2 n x-1) & \text { if } \frac{1}{2 n} \leq x \leq \frac{3}{4 n} \\ 4 n(1-n x) & \text { if } \frac{3}{4 n} \leq x \leq \frac{1}{n} \\ \frac{n}{n-1}(n x-1) & \text { if } \frac{1}{n} \leq x \leq 1\end{cases}
$$

If n is such that the area of the region bounded by the curves $x=0, x=1, y=0$ and $y=f(x)$ is 4 , then the maximum value of the function f is 8.
Q. 10

Let $7 \overbrace{5 \cdots 57}^{r}$ the remaining r digits are 5 . Consider the sum $S=77+757+7557+\cdots+7 \overbrace{5 \cdots 5}^{98}$. If $S=\frac{7 \overbrace{5 \cdots 5}^{99} 7+m}{n}$, where m and n are natural numbers less than 3000 , then the value of $m+n$ is 1219 .
Q. 11

Let $A=\left\{\frac{1967+1686 i \sin \theta}{7-3 i \cos \theta}: \theta \in \mathbb{R}\right\}$. If A contains exactly one positive integer n, then the value of n is \qquad 281 .
Q. 12 Let P be the plane $\sqrt{3} x+2 y+3 z=16$ and let $S=\left\{\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}: \alpha^{2}+\beta^{2}+\gamma^{2}=1\right.$ and the distance of (α, β, γ) from the plane P is $\left.\frac{7}{2}\right\}$. Let \vec{u}, \vec{v} and \vec{w} be three distinct vectors in S such that $|\vec{u}-\vec{v}|=|\vec{v}-\vec{w}|=|\vec{w}-\vec{u}|$. Let V be the volume of the parallelepiped determined by vectors \vec{u}, \vec{v} and \vec{w}. Then the value of $\frac{80}{\sqrt{3}} V$ is \qquad
Q. 13 Let a and b be two nonzero real numbers. If the coefficient of x^{5} in the expansion of $\left(a x^{2}+\frac{70}{27 b x}\right)^{4}$ is equal to the coefficient of x^{-5} in the expansion of $\left(a x-\frac{1}{b x^{2}}\right)^{7}$, then the value of $2 b$ is 3 .

SECTION 4 (Maximum Marks: 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.
Q. 14 Let α, β and γ be real numbers. Consider the following system of linear equations
$x+2 y+z=7$
$x+\alpha z=11$
$2 x-3 y+\beta z=\gamma$

Match each entry in List-I to the correct entries in List-II.

List-I

(P) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma=28$, then the system has
(Q) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma \neq 28$, then the system has
(R) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma \neq 28$, then the system has
(S) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma=28$, then the system has
(3) infinitely many solutions

List-II

(1) a unique solution
(2) no solution
(4) $x=11, y=-2$ and $z=0$ as a solution
(5) $x=-15, y=4$ and $z=0$ as a solution

The correct option is:
$(\mathrm{A})(P) \rightarrow(3)$
$(Q) \rightarrow(2$
$(R) \rightarrow(1) \quad(S) \rightarrow(4)$
(B) $(P) \rightarrow(3)$
$(Q) \rightarrow(2) \quad(R) \rightarrow(5)$
$(S) \rightarrow(4)$
$(\mathrm{C})(P) \rightarrow(2)$
$(Q) \rightarrow(1)$
$(R) \rightarrow(4)$
$(S) \rightarrow(5)$
$(\mathrm{D})(P) \rightarrow(2) \quad(Q) \rightarrow(1) \quad(R) \rightarrow(1) \quad(S) \rightarrow(3)$

Answer: A
Q. 15 Consider the given data with frequency distribution
$\begin{array}{ccccccc}x_{i} & 3 & 8 & 11 & 10 & 5 & 4 \\ f^{2} & 5 & 2 & 3 & 2 & 4 & 4\end{array}$
$\begin{array}{lllllll}f_{i} & 5 & 2 & 3 & 2 & 4 & 4\end{array}$
Match each entry in List-I to the correct entries in List-II.

List-I

(P) The mean of the above data is
(Q) The median of the above data is
(R) The mean deviation about the mean of the above data is
(S) The mean deviation about the median of the above data is

The correct option is:
(A) $(P) \rightarrow(3)$
$(Q) \rightarrow(2)$
$(R) \rightarrow(4)$
$(S) \rightarrow(5)$
(B) $(P) \rightarrow(3)$
$(Q) \rightarrow(2)$
$(R) \rightarrow(1$
$(S) \rightarrow(5)$
(C) $(P) \rightarrow(2)$
$(Q) \rightarrow(3)$
$(R) \rightarrow(4)$
$(S) \rightarrow(1)$
(D) $(P) \rightarrow(3)$
(Q) \rightarrow (3
$(R) \rightarrow(5)$
$(S) \rightarrow(5)$

Answer: A

List-II

(1) 2.5
(2) 5
(3) 6
(4) 2.7
(5) 2.4
Q. 16 Let ℓ_{1} and ℓ_{2} be the lines $\vec{r}_{1}=\lambda(\hat{i}+\hat{j}+\hat{k})$ and $\vec{r}_{2}=(\hat{j}-\hat{k})+\mu(\hat{i}+\hat{k})$, respectively. Let X be the set of all the planes H that contain the line ℓ_{1}. For a plane H, let $d(H)$ denote the smallest possible distance between the points of ℓ_{2} and H. Let H_{0} be a plane in X for which $d\left(H_{0}\right)$ is the maximum value of $d(H)$ as H varies over all planes in X.

Match each entry in List-I to the correct entries in List-II.

List-I

(P) The value of $d\left(H_{0}\right)$ is
(Q) The distance of the point $(0,1,2)$ from H_{0} is
(R) The distance of origin from H_{0} is
(S) The distance of origin from the point of intersection of planes $y=z, x=1$ and H_{0} is

List-II

(1) $\sqrt{3}$
(2) $\frac{1}{\sqrt{3}}$
(3) 0
(4) $\sqrt{2}$
(5) $\frac{1}{\sqrt{2}}$

The correct option is:
$(\mathrm{A})(P) \rightarrow(2) \quad(Q) \rightarrow(4) \quad(R) \rightarrow(5) \quad(S) \rightarrow(1)$
$(\mathrm{B})(P) \rightarrow(5) \quad(Q) \rightarrow(4) \quad(R) \rightarrow(3) \quad(S) \rightarrow(1)$
$(\mathrm{C})(P) \rightarrow(2) \quad(Q) \rightarrow(1) \quad(R) \rightarrow(3) \quad(S) \rightarrow(2)$
$(\mathrm{D})(P) \rightarrow(5) \quad(Q) \rightarrow(1) \quad(R) \rightarrow(4) \quad(S) \rightarrow(2)$
Answer: B
Q. 17 Let z be a complex number satisfying $|z|^{3}+2 z^{2}+4 \bar{z}-8=0$, where \bar{z} denotes the complex conjugate of z. Let the imaginary part of z be nonzero.

Match each entry in List-I to the correct entries in List-II.

List-I

(P) $|z|^{2}$ is equal to
(Q) $|z-\bar{Z}|^{2}$ is equal to
(R) $|z|^{2}+|z+\bar{Z}|^{2}$ is equal to
(S) $|z+1|^{2}$ is equal to

List-II

(1) 12
(2) 4
(3) 8
(4) 10
(5) 7

The correct option is:
$(\mathrm{A})(P) \rightarrow(1) \quad(Q) \rightarrow(3) \quad(R) \rightarrow(5) \quad(S) \rightarrow(4)$
$(\mathrm{B})(P) \rightarrow(2) \quad(Q) \rightarrow(1) \quad(R) \rightarrow(3) \quad(S) \rightarrow(5)$
$(\mathrm{C})(P) \rightarrow(2) \quad(Q) \rightarrow(4) \quad(R) \rightarrow(5) \quad(S) \rightarrow(1)$
$(\mathrm{D})(P) \rightarrow(2) \quad(Q) \rightarrow(3) \quad(R) \rightarrow(5) \quad(S) \rightarrow(4)$
Answer: B

END OF THE QUESTION PAPER

