Q-1: Choose the correct answer. A thermodynamic state function is a quantity

- (i) used to determine heat changes
- (ii) whose value is independent of the path
- (iii) used to determine pressure-volume work
- (iv) whose value depends on temperature only

Ans:

(ii) whose value is independent of the path.

Reason:

Functions like pressure, volume and temperature depend on the state of the system only and not on the path.

Q-2: For the process to occur under adiabatic conditions, the correct condition is:

(i)
$$\Delta T = 0$$
 (ii) $\Delta p = 0$

(iii)
$$q = 0$$
 (iv) $w = 0$

Ans:

$$(iii) q = 0$$

Reason:

For an adiabatic process, heat transfer is zero, i.e., q = 0.

Q-3: The enthalpies of all elements in their standard states are:

- (i) Unity (ii) Zero
- (iii) < 0 (iv) Different for every element

Ans:

(ii) Zero

Q-4: ΔU° of combustion of methane is – X kJ mol⁻¹. The value of ΔH° is

(i) =

 ΔU^{Θ}

(ii) >

_		
Λ.	TT	ы
/ 🔪		-

(iii) <

 ΔU^{Θ}

(iv) 0

Ans:

(iii) <

 ΔU^{Θ}

Reason:

$$\Delta H^\Theta = \Delta U^\Theta + \Delta n_g RT$$

 ΔU^{Θ}

= - Y

 $kJmol^{-1}$

$$\Delta H^{\Theta} = ig(-Yig) + \Delta n_g RT \Rightarrow \Delta H^{\Theta} < \Delta U^{\Theta}$$

Q-5: The enthalpy of combustion of methane, graphite and dihydrogen at 298 K are -890.3 kJ mol⁻¹ - 393.5 kJ mol⁻¹, and -285.8 kJ mol⁻¹, respectively. Enthalpy of the formation of CH_{4(g)} will be

(i) -74.8 kJ

 mol^{-1}

(ii) -52.27 kJ

 mol^{-1}

(iii) +74.8 kJ

 mol^{-1}

(iv) +52 kJ

 mol^{-1}

Ans:

$$mol^{-1}$$

$$\rightarrow$$
 $CO_{2(q)} + 2H_2O_{(q)}$

$$\Delta H = -890.3 kJmol^{-1}$$

2.
$$C_{(s)} + O_{2(g)}$$

$$\Delta H = -393.5 kJmol^{-1}$$

3.
$$2H_{2(g)} + O_{2(g)}$$

$$\rightarrow$$
 2H₂O_(g)

$$\Delta H = -285.8 kJmol^{-1}$$

$$C_{(s)} + 2H_{2(g)}$$

$$\overset{\longrightarrow}{\mathsf{CH}_{4(g)}}$$

$$\Delta_f H_{CH_4}$$

$$\Delta_c H_c$$

$$2\Delta_f H_{H_2}$$

$$\Delta_f H_{CO_2}$$

$$mol^{-1}$$

= -74.8 kJ

 mol^{-1}

Q-6: A reaction, A + B \rightarrow C + D + q, is found to have a positive entropy change. The reaction will be

- (i) possible at high temperature
- (ii) possible only at low temperature
- (iii) not possible at any temperature
- (iv) possible at any temperature

Ans:

(iv) possible at any temperature

 ΔG

should be -ve for spontaneous reaction to occur

 ΔG

_

 ΔH

- T

 ΔS

As per the given question,

 ΔH

is -ve (as heat is evolved)

 ΔS

is +ve Therefore,

 ΔG

is negative

So, the reaction will be possible at any temperature.

Q-7: In a process, 701 J of heat is absorbed by a system, and 394 J of work is done by the system. What is the change in internal energy for the process?

Ans:

As per Thermodynamics 1st law,

 ΔU

= q + W(i);

 ΔU

internal energy = heat W = work done

W = -594 J (work done by the system)

q = +701 J (+ve as heat is absorbed)

Now,

 ΔU

= 701 + (-594)

 ΔU

= 307 J

Q-8: The reaction of cyanamide, $NH_2CN_{(s)}$, with dioxygen was carried out in a bomb calorimeter, and ΔU was found to be -742.7 kJ mol⁻¹ at 298 K. Calculate the enthalpy change for the reaction at 298 K.

$$NH_2CN_{(g)} + 3/2 O_{2(g)} \rightarrow N_{2(g)} + CO_{2(g)} + H_2O_{(l)}$$

Ans:

 ΔH

is given by,

$$\Delta H = \Delta U + \Delta n_g RT$$
....(1) Δn_g

= change in number of moles

 Δn_g

= change in number of moles

 ΔU

= change in internal energy

Here,

$$\Delta n_g = \sum n_g(product) - \sum n_g(reactant)$$
 = (2 - 1.5) moles

 Δn_q

= 0.5 moles Here,

T =298 K

 ΔU

= -742.7

 $kJmol^{-1}$

R =

$$8.314 \times 10^{-3} kJmol^{-1}K^{-1}$$

Now, from (1)

$$\Delta H = (-742.7 kJ mol^{-1}) + (0.5 mol)(298 K)(8.314 \times 10^{-3} kJ mol^{-1} K^{-1})$$

$$= -742.7 + 1.2$$

 ΔH

= -741.5

 $kJmol^{-1}$

Q-9: Calculate the number of kJ of heat necessary to raise the temperature of 60.0 g of aluminium from 35°C to 55°C. The molar heat capacity of AI is 24 J mol⁻¹ K⁻¹.

Ans:

Expression of heat(q),

$$q=mCP\Delta T$$
;....(a) ΔT

= Change in temperature c = molar heat capacity

m = mass of substance

From (a)

$$q = (\frac{60}{27} mol)(24 mol^{-1} K^{-1})(20 K)$$

q = 1066.67 J = 1.067 KJ

Q-10: Calculate the enthalpy change on freezing of 1.0 mol of water at 10.0°C to the ice at –10.0°C. $\Delta_{\text{fus}}\text{H}$ = 6.03 kJ mol⁻¹ at 0°C.

$$C_p[H_2O_{(l)}] = 75.3J \ mol^{-1}K^{-1}$$

$$C_p[H_2O_{(s)}] = 36.8 J \ mol^{-1}K^{-1}$$

Ans:

 ΔH_{total}

- = sum of the changes given below:
- (a) Energy change that occurs during the transformation of 1 mole of water from

(b) Energy change that occurs during the transformation of 1 mole of water at

$$0^{\circ}C$$
 to 1 mole of ice at $0^{\circ}C$

(c) Energy change that occurs during the transformation of 1 mole of ice from

$$0^{\circ}C\ to\ (-10)^{\circ}C$$

$$\Delta H_{total} = C_p[H_2OCl]\Delta T + \Delta H_{freezing}C_p[H_2O_l]\Delta T$$
 = (75.3

$$Jmol^{-1}K^{-1}$$
)(0 - 10)K + (-6.03*1000 $Jmol^{-1}$ (-10-0)K

= -753

 $Jmol^{-1}$

- 6030

 $Jmol^{-1}$

- 368

 $Jmol^{-1}$

= -7151

 $Jmol^{-1}$

= -7.151

$kJmol^{-1}$

Thus, the required change in enthalpy for the given transformation is -7.151

$kJmol^{-1}$

Q-11 Enthalpy of combustion of carbon to CO_2 is -393.5 kJ mol⁻¹. Calculate the heat released upon the formation of 35.2 g of CO_2 from carbon and dioxygen gas.

Ans:

Formation of carbon dioxide from di-oxygen and carbon gas is given as:

$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)};$$

$$\Delta_f H$$

= -393.5

 $kJmol^{-1}$

1 mole CO₂ = 44g

Heat released during formation of 44g CO₂ = -393.5

$$k.Imol^{-1}$$

Therefore, the heat released during the formation of 35.2g of CO₂ can be calculated as

=

$$\tfrac{-393.5kJmol^{-1}}{44g}\times35.2g$$

= -314.8

 $kJmol^{-1}$

Q-12: Enthalpies of formation of CO $_{(g)}$, CO $_{2 (g)}$, N $_2$ O $_{(g)}$ and N $_2$ O $_{4(g)}$ are -110, -393, 81 and 9.7 kJ mol $^{-1}$, respectively. Find the value of Δ_r H for the reaction:

$$N_2O_{4(g)} + 3CO_{(g)} \rightarrow N_2O_{(g)} + 3CO_{2(g)}$$

Ans:

 $\Delta_r H$

for any reaction is defined as the difference between

 $\Delta_f H$

value of products and

 $\Delta_f H$

value of reactants."

$$\Delta_r H = \sum \Delta_f H(products) - \sum \Delta_f H(reactants)$$

Now, for

$$N_2O_{4(g)} + 3CO_{(g)}$$
 à $N_2O_{(g)} + 3CO_{2(g)}$

$$\Delta_r H = \left[\left(\Delta_f H(N_2O) + \left(3\Delta_f H(CO_2) \right) - \left(\Delta_f H(N_2O_4) + 3\Delta_f H(CO) \right) \right]$$

Now, substituting the given values in the above equation, we get:

 $\Delta_r H$

= [{81

 $kJmol^{-1}$

+3(-393)

 $kJmol^{-1}$

 $} - {9.7}$

 $kJmol^{-1}$

+3(-110)

$$kJmol^{-1}$$

}]
 $\Delta_r H$
= -777.7
 $kJmol^{-1}$

Q-13: Given N₂ (g) + 3H₂ (g) \rightarrow 2NH₃ (g) ; $\triangle_r H^0 = -92.4$ kJ mol⁻¹ What is the standard enthalpy of the formation of NH₃ gas?

Ans:

"Standard enthalpy of formation of a <u>compound</u> is the enthalpy that takes place during the formation of 1 mole of a substance in its standard form, from its constituent elements in their standard state."

Dividing the chemical equation given in the question by 2, we get

$$(0.5)N_{2(q)} + (1.5)H_{2(q)} \rightarrow 2NH_{3(q)}$$

Therefore, standard enthalpy for formation of ammonia gas

$$= (0.5)$$

$$\Delta_r H^{\Theta}$$

$$= (0.5)(-92.4)$$

$$kJmol^{-1}$$

= -46.2

 $kJmol^{-1}$

Q-14: Calculate the standard enthalpy of formation of CH₃OH₀ from the following data:

$$CH_3OH_{(1)} + 3/2 O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(1)};$$

$$\Delta_r H^{\Theta}$$

$$kJmol^{-1}$$

$$C_{(g)} + O_{2(g)} \rightarrow CO_{2(g)};$$

$$\Delta_c H_{\Theta}$$

$$kJmol^{-1}$$


```
H_{2(g)} + 1/2 O_{2(g)} \rightarrow H_2O_{(I)};
  \Delta_f H^{\Theta}
  = -286
  kJmol^{-1}
Ans:
C_{(s)} + 2H_2O_{(g)} + (1/2)O_{2(g)} \rightarrow CH_3OH_{(I)} .....(i)
CH<sub>3</sub>OH<sub>(i)</sub> can be obtained as follows,
 \Delta_f H_{\Theta}
 [CH_3OH_{(1)}] =
 \Delta_c H_{\Theta}
 \Delta_f H_{\Theta}
 \Delta_r H_{\Theta}
 = (-393
 kJmol^{-1}
 ) +2(-286
 kJmol^{-1}
 ) - (-726
 kJmol^{-1}
 )
= (-393 - 572 + 726)
kJmol^{-1}
= -239
kJmol^{-1}
Thus,
  \Delta_f H_{\Theta}
 [CH_3OH_{(I)}] = -239
  kJmol^{\stackrel{\sim}{-}1}
```


Q-15: Calculate the enthalpy change for the process

 $CCI_{4(g)} \rightarrow C_{(g)} + 4CI_{(g)}$ and determine the value of bond enthalpy for C-CI in $CCI_{4(g)}$.

$$\begin{split} &\Delta_{vap}H^{\Theta}\\ &(\mathrm{CCl_4}) = 30.5\\ &kJmol^{-1}\\ &\cdot\\ &\Delta_fH^{\Theta}\\ &(\mathrm{CCl_4}) = -135.5\\ &kJmol^{-1}\\ &\cdot\\ &\cdot\\ &\Delta_aH^{\Theta}\\ &(\mathrm{C}) = 715\\ &kJmol^{-1}\\ &,\\ &\Delta_aH^{\Theta}\\ &\mathrm{is\ a\ enthalpy\ of\ atomisation}\\ &\Delta_aH^{\Theta}\\ &(\mathrm{Cl_2}) = 242\\ &kJmol^{-1}\\ \end{split}$$

Ans:

"The chemical equations implying the given values of enthalpies" are:

$$\Delta_{vap}H^{\Theta}$$
= 30.5
 $kJmol^{-1}$
(2) $C_{(s)} \grave{a} C_{(g)}$

$$\Delta_a H^{\Theta}$$
= 715
 $kJmol^{-1}$

(3) Cl_{2(g)} à 2Cl_(g);

$$\Delta_a H^\Theta$$

= 242
 $kJmol^{-1}$
(4) $C_{(g)} + 4Cl_{(g)} \grave{a} CCl4(g);$
 $\Delta_f H^\Theta$
= -135.5
 $kJmol^{-1}$
 ΔH

for the process $CCl_{4(g)}$ à $C_{(g)}$ + $4Cl_{(g)}$ can be measured as:

$$\Delta H = \Delta_a H^{\Theta}(C) + 2\Delta_a H^{\Theta}(Cl_2) - \Delta_{vap} H^{\Theta} - \Delta_f H$$
= (715
$$kJmol^{-1}$$
) + 2(
$$kJmol^{-1}$$
) - (30.5
$$kJmol^{-1}$$
) - (-135.5
$$kJmol^{-1}$$
)

Therefore,

$$H=1304kJmol^{-1} \\$$

The value of bond enthalpy for C-Cl in $\text{CCl}_{4(g)}$

=

$$\frac{1304}{4}kJmol^{-1}$$

$$= 326$$

$$kJmol^{-1}$$

Q-16: For an isolated system, $\Delta U = 0$, what will be ΔS ?

Ans:

T =

ΔU is positive ; ΔU > 0. As
ΔU = 0, then ΔS
will be +ve, and as a result, the reaction will be spontaneous.
Q-17: For the reaction at 298K,
$\mathbf{2A} + \mathbf{B} \to \mathbf{C}$
ΔH = 400 $kJmol^{-1}$
$\begin{array}{l} \Delta H \\ = \text{0.2} \\ kJmol^{-1}K^{-1} \end{array}$
At what temperature will the reaction become spontaneous considering
ΔS and ΔH
to be constant over the temperature range?
Ans:
Now,
$\Delta G = \Delta H\!\!-\!\!T\Delta S$
Let the given reaction is at equilibrium, then
ΔT
will be:

= 0 at equilibrium) = 400

 $\begin{array}{c} kJmol^{-1}\\ \text{/0.2}\\ kJmol^{-1}K^{-1} \end{array}$

Therefore, T = 2000K

Thus, for the spontaneous,

 ΔG

must be -ve and T > 2000K.

Q-18: For the reaction

 $2CI_{(g)} \longrightarrow CI_{2(g)}$

What are the signs of

 ΔS and

 ΔH

r Ans:

 ΔS

and ΔH

are having negative sign.

The reaction given in the question represents the formation of CI molecules from CI atoms. As the formation of a bond takes place in the given reaction, energy is released. So,

 ΔH

is negative.

Also, 2 moles of Chlorine atoms have more randomness than 1 mole of chlorine molecule. So, the spontaneity is decreased. Thus,

 ΔS

is negative.

Q-19: For the reaction

$$2A_{\scriptscriptstyle (g)} + B_{\scriptscriptstyle (g)} {\longrightarrow} 2D_{\scriptscriptstyle (g)}$$

 ΔU^{Θ}

= -10.5 kJ and

 ΔS^{Θ}

= -44.1

 JK^{-1}

Calculate

 ΔG^{Θ}

for the reaction, and predict whether the reaction may occur spontaneously.

Ans:

$$2A_{(q)} + B_{(q)} \rightarrow 2D_{(q)}$$

 Δn_a

= 2 - 3

= -1 mole

Putting value of

 ΔU^{Θ}

in expression of

 ΔH

:

$$\Delta H^{\Theta} = \Delta U^{\Theta} + \Delta n_g RT$$
 = (-10.5KJ) - (-1)(

$$8.314 \times 10^{-3} kJK^{-1} mol^{-1}$$
)(298K)

= -10.5kJ -2.48kJ


```
\Delta H^{\Theta}
= -12.98kJ
Putting value of
\Delta S^{\Theta}
and
\Delta H^{\Theta}
in expression of
\Delta G^{\Theta}
\Delta G^{\Theta} = \Delta H^{\Theta} - T \Delta S^{\Theta}
= -12.98kJ -(298K)(-44.1
JK^{-1}
= -12.98kJ +13.14kJ
\Delta G^{\Theta}
= 0.16kJ
As
 \Delta G^{\Theta}
 is positive, the reaction won't occur spontaneously.
```

Q-20: The equilibrium constant for a reaction is 10. What will be the value of ΔG_0 ? R = 8.314 JK⁻¹ mol⁻¹, T = 300 K.

Ans:

Now,

$$\Delta G^{\Theta}$$
 = $-2.303RT \ln k$ = $(2.303)($ $8.314 \times kJK^{-1}mol^{-1}$ $)(300K)$ $\log 10$

= -5527

 $Jmol^{-1}$

= -5.527

 $kJmol^{-1}$

Q-21: Comment on the thermodynamic stability of NO(g), given,

$$(1/2)N_{2(g)} + (1/2)O_{2(g)} \rightarrow NO_{(g)};$$

$$\Delta_r H^{\Theta} = 90kJmol^{-1}$$

$$NO_{(g)} + (1/2)O_{2(g)} \rightarrow NO_{2(g)};$$

$$\Delta_r H^{\Theta} = -74k J mol^{-1}$$

Ans:

The +ve value of

$\Delta_{\tau}H$

represents that during $NO_{(q)}$ formation from O_2 and N_2 , heat is absorbed. The obtained product, $NO_{(g)}$ will have more energy than reactants. Thus, $NO_{(g)}$ is unstable.

The -ve value of

$\Delta_{\tau}H$

represents that during $NO_{2(g)}$ formation from $O_{2(g)}$ and $NO_{(g)}$, heat is evolved. The obtained product, $NO_{2(g)}$ gets stabilised with minimum energy.

Thus, unstable NO_(g) converts into stable NO_{2(g)}.

-22: Calculate the entropy change in surroundings when 1.00 mol of $H_2O(I)$ is formed under standard conditions. $\Delta_f H^0 = -286 \text{ kJ mol}^{-1}$.

Ans:

$$\Delta_r H^\Theta = -286 k J mol^{-1}$$

is given, so that amount of heat is evolved during the formation of 1 mole of $H_2O_{\scriptscriptstyle (I)}$. Thus, the same heat will be absorbed by surrounding $Q_{\scriptscriptstyle surr}$ = +286

 $kJmol^{-1}$

Now,

$$\Delta S_{surr}$$

= Q_{surr}/7

=

$$\frac{286kJmol^{-1}}{298K}$$

Therefore,

$$\Delta S_{surr}=959.73Jmol^{-1}K^{-1}$$