Q1. What will be the minimum pressure required to compress $500 \mathrm{dm}^{3}$ of air at 1 bar to $200 \mathrm{dm}^{3}$ at $30^{\circ} \mathrm{C}$?

Answer:
Initial pressure, $\mathrm{P}_{1}=1$ bar

Initial volume, $\mathrm{V}_{1}=500$
$d m^{3}$

Final volume, $\mathrm{V}_{2}=200$

$$
d m^{3}
$$

As the temperature remains the same, the final pressure $\left(\mathrm{P}_{2}\right)$ can be calculated with the help of Boyle's law.
According to Boyle's law,

$$
\begin{aligned}
& \mathrm{P}_{1} V_{1}=\mathrm{P}_{2} V_{2} \\
& \mathrm{P}_{2}= \\
& \frac{P_{1} V_{1}}{V_{2}} \\
& = \\
& \frac{1 \times 500}{200} \\
& =2.5 \mathrm{bar}
\end{aligned}
$$

\therefore the minimum pressure required to compress is 2.5 bar.

Q2. A vessel of 120 mL capacity contains a certain amount of gas at $35^{\circ} \mathrm{C}$ and 1.2 bar pressure. The gas is transferred to another vessel of volume 180 mL at $35^{\circ} \mathrm{C}$. What would be its pressure?

Answer:

Initial pressure, $\mathrm{P}_{1}=1.2$ bar

Initial volume, $\mathrm{V}_{1}=120 \mathrm{~mL}$
Final volume, $\mathrm{V}_{2}=180 \mathrm{~mL}$

As the temperature remains the same, the final pressure $\left(\mathrm{P}_{2}\right)$ can be calculated with the help of Boyle's law.

According to Boyle's law,
$P_{1} V_{1}=P_{2} V_{2}$
$\mathrm{P}_{2}=$
$\frac{P_{1} V_{1}}{V_{2}}$
$=$
$\frac{1.2 \times 120}{180}$
$=0.8 \mathrm{bar}$

Therefore, the min pressure required is 0.8 bar.

Q3. Using the equation of state $p V=n R T$, show that at a given temperature density of a gas is proportional to gas pressure p.

Answer:
The equation of state is given by
$\mathrm{pV}=\mathrm{nRT}$
Where, $\mathrm{p}=$ Pressure
$\mathrm{V}=$ Volume
$\mathrm{N}=$ Number of moles
R = Gas constant
T = Temperature
$\frac{n}{V}$
$=$
$\frac{p}{R T}$
Replace n with
$\frac{m}{M}$
, therefore,
$\frac{m}{M V}$
$=$
$\frac{p}{R T}$
Where, $\mathrm{m}=$ Mass
M = Molar mass
But,

${ }^{m}$

$=\mathrm{d}$
Where, $\mathrm{d}=$ Density
Therefore, from equation (2), we get

$$
\frac{d}{M}
$$

$$
=
$$

$$
\frac{p}{R T}
$$

$$
d=(
$$

$\frac{M}{R T}$
) p
d
\propto
P
Therefore, at a given temperature, the density of the gas (d) is proportional to its pressure (p).

Q4. At $0^{\circ} \mathrm{C}$, the density of a certain oxide of a gas at 2 bar is the same as that of dinitrogen at 5 bar. What is the molecular mass of the oxide?

Answer:

The density (d) of the substance at temperature (T) can be given by
$d=$

$\frac{M p}{R T}$

Now, the density of oxide $\left(d_{1}\right)$ is given as

```
d
=
    M, M, p
Where M}\mp@subsup{\mathbf{M}}{1}{}=\mathrm{ Mass of the oxide
p
```

The density of dinitrogen gas $\left(d_{2}\right)$ is given as,
d_{2}
$=$
$\frac{M_{1} p_{2}}{R T}$
Where $M_{2}=$ Mass of the oxide
$\mathrm{p}_{2}=$ Pressure of the oxide

According to the question,
$d_{1}=d_{2}$
Therefore,
$M_{1} p_{1}=M_{2} p_{2}$
Given:
p_{1}
$=2$ bar
p_{2}
$=5$ bar
Molecular mass of nitrogen,
M_{2}
$=28 \mathrm{~g} / \mathrm{mol}$
Now,
M_{1}
$=$
$\frac{M_{2} p_{2}}{p_{1}}$
=
$\frac{28 \times 5}{2}$
$=70 \mathrm{~g} / \mathrm{mol}$

Therefore, the molecular mass of the oxide is $70 \mathrm{~g} / \mathrm{mol}$.

Q5. The pressure of 1 g of an ideal gas A at $27^{\circ} \mathrm{C}$ is found to be 2 bar. When 2 g of another ideal gas B is introduced in the same flask at the same temperature, the pressure becomes 3 bar. Find a relationship between their molecular masses.

Answer:
For ideal gas A , the ideal gas equation is given by,

$$
\begin{equation*}
p_{X} V=n_{X} R T \tag{1}
\end{equation*}
$$

Where
p_{X}
and
n_{X}
epresents the pressure and number of moles of gas X.
For ideal gas Y , the ideal gas equation is given by

$$
\begin{equation*}
p_{Y} V=n_{Y} R T \tag{2}
\end{equation*}
$$

Where

p_{Y}
and
n_{Y}
represents the pressure and number of moles of gas Y .
[V and T are constants for gases X and Y]
From equation (1),

$$
\begin{align*}
& p_{X} V=\frac{m_{X}}{M_{X}} \\
& \text { RT } \\
& \frac{p_{X} M_{X}}{m_{X}} \\
& = \\
& \frac{R T}{V} \tag{3}
\end{align*}
$$

From equation (2),

```
p}\mp@subsup{p}{Y}{}V=\frac{\mp@subsup{m}{Y}{}}{\mp@subsup{M}{Y}{}
RT
\frac{p}{Y}\mp@subsup{M}{Y}{}
=
RT
(4)
```

Where

$$
M_{X}
$$

and
M_{Y}
are the molecular masses of gases X and Y , respectively. Now, from equations (3) and (4),

$$
\begin{align*}
& \frac{p_{X} M_{X}}{m_{X}} \\
& = \\
& \frac{p_{Y} M_{Y}}{m_{Y}} \tag{5}
\end{align*}
$$

Given,

```
    m
    =1g
    p
    = 2 bar
    m
    =2g
    p
= (3-2) = 1 bar (Since total pressure is 3 bar.)
Substituting these values in equation (5),
```

$\frac{2 \times M_{X}}{1}$
$=$
$\frac{1 \times M_{Y}}{2}$
4

$$
\begin{aligned}
& M_{X} \\
& = \\
& M_{Y}
\end{aligned}
$$

Therefore, the relationship between the molecular masses of X and Y is

4
M_{X}
$=$
M_{Y}
Q6. The drain cleaner, Drainex, contains small bits of aluminium which react with caustic soda to produce dihydrogen. What volume of dihydrogen at $20^{\circ} \mathrm{C}$ and one bar will be released when 0.15 g of aluminium reacts?

Answer:

The reaction of aluminium with caustic soda is given below.

```
2AI + 2NaOH + 2H2O
->
2NaAIO}+3\mp@subsup{\textrm{H}}{2}{
At Standard Temperature Pressure (273.15 K and 1 atm), 54 g ( }2\times27\textrm{g}\mathrm{ ) of Al gives 3 }\times22400\textrm{mL}\mathrm{ of H2.
Therefore, 0.15 g Al gives
=
    3\times22400\times0.15
mL of H2
= 186.67 mL of H2
At Standard Temperature Pressure,
    p
    =1 atm
    V
    = 186.67 mL
    T
    =273.15 K
```

[^0]```
V
at
p
=0.987 atm (since 1 bar = 0.987 atm) and
 T
 =
 20
C=(273.15 + 20) K=293.15 K.
Now,
 \mp@subsup{p}{1}{}\mp@subsup{V}{1}{}
=
 \mp@subsup{p}{2}{}\mp@subsup{V}{2}{}
 V2=
=
 1\times186.67\times293.15
 0.987\times273.15
= 202.98 mL
= 203 mL
```

Hence, 203 mL of dihydrogen will be released.

Q7. What will be the pressure exerted by a mixture of 3.2 g of methane and 4.4 g of carbon dioxide contained in a $9 \mathrm{dm}^{3}$ flask at $27^{\circ} \mathrm{C}$ ?

Answer:
It is known that,
$\mathrm{p}=$
$\frac{m}{M}$
For methane $\left(\mathrm{CH}_{4}\right)$,

$$
\begin{aligned}
& p_{C H_{4}} \\
& = \\
& \\
& \\
& \frac{3.2}{16} \\
& \times \\
& \frac{8.314 \times 300}{9 \times 10^{-3}}
\end{aligned}
$$

[Since $9 \mathrm{dm}^{3}=$

$$
9 \times 10^{-3}
$$

$$
\mathrm{m}^{3}
$$

$$
27^{\circ}
$$

27。
C $=300 \mathrm{~K}$ ]
$=5.543 \times$
$10^{4}$
Pa
For carbon dioxide $\left(\mathrm{CO}_{2}\right)$,
$p_{\mathrm{CO}_{2}}$
=
$\frac{4.4}{44}$
$\times$
$\frac{8.314 \times 300}{9 \times 10^{-3}}$
$=2.771 \times$
$10^{4}$
Pa
The total pressure exerted by the mixture can be calculated as
$\mathrm{p}=$
$p_{\mathrm{CH}_{4}}$
$+$
$p_{\mathrm{CO}_{2}}$
$=(5.543 \times$

```
10
+2.771 x
104
) Pa
= 8.314 x
104
Pa
```

Q8. What will be the pressure of the gaseous mixture when $0.5 L$ of $H_{2}$ at 0.8 bar and $2.0 L$ of dioxygen at 0.7 bar are introduced in a 1 L vessel at $27^{\circ} \mathrm{C}$ ?

Answer:
Let the partial pressure of

$$
\mathrm{H}_{2}
$$

in the container be
$p_{H_{2}}$

Now,
$p_{1}$
$=0.8 \mathrm{bar}$
$p_{2}$
$=$
$\boldsymbol{p}_{\mathrm{H}_{2}}$
$V_{1}$
$=0.5 \mathrm{~L}$
$V_{2}$
$=1 \mathrm{~L}$
It is known that,
$p_{1}$
$V_{1}$
$=$
$\boldsymbol{p}_{2}$
$V_{2}$
$p_{2}$
$=$
$\frac{p_{1} \times V_{1}}{V_{2}}$
$\boldsymbol{p}_{\mathrm{H}_{2}}$
$=$
$\frac{0.8 \times 0.5}{1}$
$=0.4$ bar

Now, let the partial pressure of $\mathrm{O}_{2}$ in the container be

```
p
Now,
p
= 0.7 bar
p
=
po\mp@subsup{O}{2}{}
V
=2.0 L
V
= 1 L
p
V
=
p
V
p
=
p}\frac{\mp@subsup{p}{1}{}\times\mp@subsup{V}{1}{}}{\mp@subsup{V}{2}{}
pO
=
0.7\times20
= 1.4 bar
```

The total pressure of the gas mixture in the container can be obtained as

```
ptotal
=
p
+
poz
=0.4 + 1.4
= 1.8 bar
```

Q9. The density of a gas is found to be $5.46 \mathrm{~g} / \mathrm{dm} 3$ at $27^{\circ} \mathrm{C}$ at 2 bar pressure. What will be its density at STP?

Answer:
Given,
$\mathrm{d}_{1}=5.46 \mathrm{~g} / \mathrm{dm}^{3}$
$p_{1}=2$ bar
$\mathrm{T}_{1}=$
$27^{\circ}$
$C=(27+273) K=300 K$
$\mathrm{p}_{2}=1 \mathrm{bar}$
$\mathrm{T}_{2}=273 \mathrm{~K}$
$\mathrm{d}_{2}=$ ?
The density ( $\mathrm{d}_{2}$ ) of the gas at STP can be calculated using the equation,
d =
$\frac{M p}{R T}$
$\frac{d_{1}}{d_{2}}$
$=$
$\frac{\frac{M p_{1}}{}}{\frac{R T_{1}}{}} \frac{P_{2}}{R T_{2}}$
$\frac{d_{1}}{d_{2}}$
$=$
$\frac{p_{1} T_{2}}{p_{2} T_{1}}$
$\mathrm{d}_{2}=$
$\frac{p_{2} T_{1} d_{1}}{p_{1} T_{2}}$
$=$
$\frac{1 \times 300 \times 5.46}{2 \times 273}$
$=3 \mathrm{~g} \mathrm{dm}^{-3}$
Hence, the density of the gas at STP will be $3 \mathrm{~g} \mathrm{dm}^{-3}$

Q10. 34.05 mL of phosphorus vapour weighs 0.0625 g at $546^{\circ} \mathrm{C}$ and 0.1 bar pressure. What is the molar mass of phosphorus?

Answer:
Given,
$\mathrm{p}=0.1$ bar
$V=34.05 \mathrm{~mL}=34.05 \times 10^{-3}$

$$
d m^{3}
$$

$\mathrm{R}=0.083$ bar
$d m^{3}$
at $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{T}=$
$546^{\circ} \mathrm{C}$
$=(546+273) \mathrm{K}=819 \mathrm{~K}$
The no. of moles ( n ) can be calculated using the ideal gas equation as $\mathrm{pV}=\mathrm{nRT}$
$\mathrm{n}=$
$\frac{p V}{R T}$
$=$
$\frac{0.1 \times 34.05 \times 10^{-3}}{0.083 \times 819}$

Therefore, molar mass of phosphorus = $\frac{0.0625}{5.01 \times 10^{-5}}$
$=125 \mathrm{~g} \mathrm{~mol}^{-1}$

## Q11. A student forgot to add the reaction mixture to the container at

C, but instead, he placed the container on the flame. After a lapse of time, he came to know about his mistake and using a pyrometer, he found the temp of the container $477^{\circ}$
C. What fraction of air would have been expelled out?

Answer:
Let the volume of the container be V .
The volume of the air inside the container at

## $27^{\circ}$

C is V .
Now,
$\mathrm{V}_{1}=\mathrm{V}$
$\mathrm{T}_{1}=$
$27^{\circ}$
$\mathrm{C}=300 \mathrm{~K} \mathrm{~V}_{2}=$ ?
$\mathrm{T}_{2}=$
$477^{\circ}$
$\mathrm{C}=750 \mathrm{~K}$
According to Charles's law,

$$
\frac{V_{1}}{T_{1}}
$$

$=$
$\frac{V_{2}}{T_{2}}$
$V_{1}$
$=$
$\frac{V_{1} T_{2}}{T_{1}}$
$=$
$\frac{750 \mathrm{~V}}{300}$
$=2.5 \mathrm{~V}$
Therefore, the volume of air expelled out
$=2.5 \mathrm{~V}-\mathrm{V}=1.5 \mathrm{~V}$

Hence, the fraction of air expelled out
$=$
$\frac{1.5 V}{2.5 V}$
$=$
$\frac{3}{5}$
Q12. Calculate the temperature of 4.0 mol of a gas occupying $5 \mathrm{dm}^{3}$ at $3.32 \mathrm{bar}^{( }\left(R=0.083 \mathrm{bar}^{\mathrm{dm}} \mathrm{K}^{-}\right.$ ${ }^{1} \mathrm{~mol}^{-1}$ ).

Given,
$\mathrm{N}=4.0 \mathrm{~mol}$
$V=5$
$d m^{3}$
$\mathrm{p}=3.32$ bar
$R=0.083$ bar

$$
d m^{3}
$$

at $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
The temp ( T ) can be calculated using the ideal gas equation as
$\mathrm{pV}=\mathrm{nR} T$
$\mathrm{T}=$
$\frac{p V}{n R}$
$=$
$\frac{3.32 \times 5}{4 \times 0.083}$
$=50 \mathrm{~K}$
Therefore, the required temp is 50 K .
Answer:
Molar mass of dinitrogen $\left(\mathrm{N}_{2}\right)=28 \mathrm{~g} \mathrm{~mol}^{-1}$
Thus, 1.4 g of $\mathrm{N}_{2}$
=
$\frac{1.4}{28}$
$=0.05 \mathrm{~mol}$
$=0.05 \times 6.02 \times 10^{23}$ no. of molecules
$=3.01 \times 10^{23} \mathrm{no}$. of molecules
Now, 1 molecule of $\mathrm{N}_{2}$ has 14 electrons.
Therefore, $3.01 \times 10^{23}$ molecules of $\mathrm{N}_{2}$ contains
$=14 \times 3.01 \times 1023$
$=4.214 \times 10^{23}$ electrons
Q13. Calculate the total number of electrons present in 1.4 g of dinitrogen gas.
Q14. How much time would it take to distribute one Avogadro number of wheat grains, if $10^{10}$ grains are distributed each second?
Answer:
Avogadro no. $=6.02 \times 10^{23}$
Therefore, the time taken
=
$\frac{6.02 \times 10^{23}}{10^{10}} s$$=6.02 \times 10^{13} \mathrm{~s}$
=

```
\frac{6.02\times1\mp@subsup{0}{}{23}}{60\times60\times24\times365}}\mathrm{ years
= 1.909 * 10 ' years
```

Therefore, the time taken would be $1.909 \times 10^{6}$ years.

Q15. Calculate the total pressure in a mixture of 8 g of dioxygen and 4 g of dihydrogen confined in a vessel of $1 \mathrm{dm}^{3}$ at $27^{\circ} \mathrm{C} . R=0.083 \mathrm{bar} \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

## Answer:

Given:
Mass of $\mathrm{O}_{2}=8 \mathrm{~g}$
No. of moles
=
$\frac{8}{32}$
$=0.25 \mathrm{~mole}$

Mass of $\mathrm{H}_{2}=4 \mathrm{~g}$
No. of moles
=
$\frac{4}{2}$
$=2$ mole

Hence, the total no. of moles in the mixture
$=0.25+2$
$=2.25 \mathrm{~mole}$

Given:

```
V = 1
dm
n = 2.25 mol
R = 0.083 bar
dm
at K-1 mol-1
T=
27
C = 300 K
Total pressure :
pV = nRT
p=
 nRT
 =
 225\times0.083\times300
= 56.025 bar
```

Therefore, the total pressure of the mixture is 56.025 bar.

Q16. Payload is defined as the difference between the mass of displaced air and the mass of the balloon. Calculate the payload when a balloon of radius 10 m , mass 100 kg , is filled with helium at 1.66 bar at $27^{\circ} \mathrm{C}$. (Density of air $=1.2 \mathrm{~kg} \mathrm{~m}^{-3}$ and $R=0.083 \mathrm{bar} \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ )

Answer:
Given:
$r=10 \mathrm{~m}$
Therefore, the volume of the balloon

$$
\begin{aligned}
& \frac{4}{3} \\
& \pi r^{3} \\
& = \\
& \frac{4}{3} \times \frac{22}{7} \times 10^{3} \\
& =4190.5 \mathrm{~m}^{3} \text { (approx.) }
\end{aligned}
$$

Therefore, the volume of the displaced air

$$
=4190.5 \times 1.2 \mathrm{~kg}
$$

$$
=5028.6 \mathrm{~kg}
$$

Mass of helium,

## $\frac{M p V}{R T}$

$$
\text { Where, } M=4 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}
$$

$$
p=1.66 \text { bar }
$$

$$
\mathrm{V}=\text { Volume of the balloon }
$$

$$
=4190.5 \mathrm{~m}^{3}
$$

$$
\mathrm{R}=0.0830 .083 \mathrm{bar}
$$

$$
d m^{3}
$$

at $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{T}=27^{\circ} \mathrm{C}=300 \mathrm{~K}$
Then,
$m=$

$$
\frac{4 \times 10^{-3} \times 1.66 \times 4190.5 \times 10^{3}}{0.083 \times 300}
$$

$=1117.5 \mathrm{~kg}$ (approx.)
Now, total mass with helium
$=(100+1117.5) \mathrm{kg}$
$=1217.5 \mathrm{~kg}$
Therefore, payload
$=(5028.6-1217.5)$
$=3811.1 \mathrm{~kg}$
Therefore, the payload of the balloon is 3811.1 kg .

Q17. Calculate the volume occupied by 8.8 g of $\mathrm{CO}_{2}$ at $31.1^{\circ} \mathrm{C}$ and 1 bar pressure. $R=0.083 \mathrm{bar}$ $\mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.

## Answer:

$\mathrm{pVM}=\mathrm{mR} T$
$\mathrm{V}=$
$\frac{m R T}{M p}$
Given:
$\mathrm{m}=8.8 \mathrm{~g}$
$R=0.083$ bar
$d m^{3}$
at $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{T}=31.1^{\circ} \mathrm{C}=304.1 \mathrm{~K}$
$M=44 \mathrm{~g}$
$\mathrm{p}=1 \mathrm{bar}$
Thus, volume (V),
=
$\frac{8.8 \times 0.083 \times 304.1}{44 \times 1}$
$=5.04806 \mathrm{~L}$
$=5.05 \mathrm{~L}$

Therefore, the volume occupied is 5.05 L .
Q18. 2.9 g of gas at $95^{\circ} \mathrm{C}$ occupied the same volume as 0.184 g of dihydrogen at $17^{\circ} \mathrm{C}$, at the same pressure. What is the molar mass of the gas?

## Answer:

Volume,

$$
\begin{aligned}
& \mathrm{V}= \\
& \frac{m R T}{M p} \\
& = \\
& \frac{0.184 \times R \times 290}{2 \times p}
\end{aligned}
$$

Let M be the molar mass of the unknown gas.
The volume occupied by the unknown gas is

$$
\begin{aligned}
& = \\
& \frac{m R T}{M p} \\
& = \\
& \frac{2.9 \times R \times 368}{M \times p}
\end{aligned}
$$

According to the question,

$$
\frac{0.184 \times R \times 290}{2 \times p}
$$

$$
=
$$

$$
\frac{2.9 \times R \times 368}{M \times p}
$$

$$
\frac{0.184 \times 290}{2}
$$

$=$

$$
\frac{2.9 \times 368}{M}
$$

$$
\mathrm{M}=
$$

$$
\frac{2.9 \times 368 \times 2}{0.184 \times 290}
$$

$$
=40 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Therefore, the molar mass of the gas is $40 \mathrm{~g} \mathrm{~mol}^{-1}$

Q19. A mixture of dihydrogen and dioxygen at one bar pressure contains $20 \%$ by weight of dihydrogen. Calculate the partial pressure of dihydrogen.

Answer:
Let the weight of dihydrogen be 20 g .
Let the weight of dioxygen be 80 g .
No. of moles of dihydrogen $\left(\mathrm{nH}_{2}\right)$
$=$
$\frac{20}{2}$
$=10$ moles
No. of moles of dioxygen $\left(\mathrm{nO}_{2}\right)$
$=$
$\frac{80}{32}$
$=2.5$ moles
Given:
$p_{\text {toal }}=1$ bar
Therefore, partial pressure of dihydrogen $\left(\mathrm{pH}_{2}\right)$
=
$\frac{n_{H_{2}}}{n_{H_{2}}+n_{O_{2}}}$
$\times \mathrm{p}_{\text {total }}$
=
$\frac{10}{10+2.5} \times 1$
$=0.8 \mathrm{bar}$
Therefore, the partial pressure of dihydrogen is 0.8 bar.

Q20. What will be the SI unit for the quantity

$$
\begin{aligned}
& \frac{p V^{2} T^{2}}{n} \\
& ?
\end{aligned}
$$

## Answer:

SI unit of pressure, $p=$

$$
N m^{-2}
$$

SI unit of volume, V =

$$
m^{3}
$$

$$
\text { SI unit of temp, } \mathrm{T}=\mathrm{K}
$$

$$
\text { SI unit of the number of moles, } \mathrm{n}=\mathrm{mol}
$$

Hence, SI unit of

$$
\frac{p V^{2} T^{2}}{n}
$$

is

$$
=
$$

$$
\frac{\left(N m^{-2}\right)\left(m^{2}\right)^{2}(K)^{2}}{m o l}
$$

$$
=
$$

$\mathrm{Nm}^{4} \mathrm{~K}^{2} \mathrm{~mol}^{-1}$

## Q21. In terms of Charles' law explain why

$-273^{\circ}$

## C is the lowest possible temperature.

Answer:
Charles' law states that pressure remains constant, and the volume of a fixed mass of a gas is directly proportional to its absolute temperature.

Charles found that for all gases, at any given pressure, the graph of volume vs temperature (in Celsius) is a straight line, and on extending to zero volume, each line intercepts the temperature axis at $-273.15^{\circ} \mathrm{C}$.

We can see that the volume of the gas at $-273.15^{\circ} \mathrm{C}$ will be zero. This means that gas will not exist. In fact, all the gases get liquified before this temperature is reached.


Q22. The critical temperature for carbon dioxide and methane are $31.1^{\circ} \mathrm{C}$ and $-81.9^{\circ} \mathrm{C}$, respectively. Which of these has stronger intermolecular forces and why?

## Answer:

If the critical temperature of a gas is higher, then it is easier to liquefy. That is, the intermolecular forces of attraction among the molecules of gas are directly proportional to its critical temperature.

Therefore, in $\mathrm{CO}_{2}$ intermolecular forces of attraction are stronger.

## Q23. Explain the physical significance of Van der Waals parameters.

## Answer:

After accounting for pressure and volume corrections, the van der Waals equation is

$$
\left(p+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T
$$

The van der Waals constants or parameters are a and b .
The relevance of $a$ and $b$ is crucial here.
The magnitude of intermolecular attractive forces within the gas is measured by the value of 'a,' which is independent of temperature and pressure.

The volume occupied by the molecule is represented by 'b,' while the total volume occupied by the molecules is represented by ' nb .'


[^0]:    Let the volume of dihydrogen be

