

(1) 10 kHz

(2) 10 MHz

NCERT Solutions for Class 12 Physics Chapter 15 – Communication Systems

Q.1: Which of the following frequencies will be suitable for beyond-the horizon communication using sky waves?

(3) 1 GHz
(4) 1000 GHz
Soln:
(2) 10 MHz
The signal waves need to travel a large distance for beyond-the-horizon communication.
Due to the antenna size, the 10 kHz signals cannot be radiated efficiently.
The 1 GHz – 1000 GHz (high energy) signal waves penetrate the ionosphere.
The 10 MHz frequencies get reflected easily from the ionosphere. Therefore, for beyond-the-horizon communication, signal waves of 10 MHz frequencies are suitable.
Q.2: Frequencies in the UHF range normally propagate by means of:
(1) Ground Waves
(2) Sky Waves
(3) Surface Waves
(4) Space Waves
Soln:
(4) Space Waves
Due to its high frequency, an ultra-high frequency (UHF) wave cannot travel along the trajectory of the ground; also, it cannot get reflected by the ionosphere. The ultrahigh-frequency signals are propagated through line-of-sight communication, which is actually space wave propagation.
Q.3: Digital signals
(i) Do not provide a continuous set of values
(ii) Represent value as discrete steps
(iii) Can utilise the binary system

Modulation index, m = 75% = 0.75

NCERT Solutions for Class 12 Physics Chapter 15 – Communication Systems

(iv) Can utilise decimal as well as binary systems

5	State which statement(s) are true.
((a) (1), (2) and (3)
(b) (1) and (2) only
(c) All statements are true
(d) (2) and (3) only
	Soln:
	(a) (1), (2) and (3), for transferring message signals, the digital signals use the binary (0 and 1) system. Such a system annot utilise the decimal system. Discontinuous values are represented in digital signals.
(Q.4: Is it necessary for a transmitting antenna to be at the same height as that of the receiving antenna for line of-sight communication? A TV transmitting antenna is 81 m tall. How much service area can it cover if the receiving antenna is at the ground level?
	Soln: In line—of—sight communication between the transmitter and the receiver, there is no physical obstruction. So, here is no need for the transmitting and receiving antennae to be at the same height.
I	Height of the antenna, $h = 81 \text{ m}$
I	Radius of earth, $R = 6.4 \times 10^6 \text{m}$
Ċ	$1 = \sqrt{2Rh}$, for range
]	The service area of the antenna is given by the relation:
P	$A = \pi d^2 = \pi (2Rh)$
=	= 3.14 x 2 x 6.4 x 10 ⁶ x 81
=	= $3255.55 \times 10^6 \mathrm{m}^2 = 3255.55 = 3256 \mathrm{km}^2$
	Q.5: A carrier wave of peak voltage 12 V is used to transmit a message signal. What should be the peak voltage of the modulating signal in order to have a modulation index of 75% ?
S	Soln:
(Given:
]	The amplitude of carrier wave, $A_c = 12 \text{ V}$

The amplitude of the modulating wave $= A_m$

The modulation index is given by the relation:

m =

Therefore, $A_m = m.A_c$

$$= 0.75 \times 12 \text{ V} = 9 \text{ V}$$

Q.6: A modulating signal is a square wave, as shown in the figure.

The carrier wave is given by $c(t) = 2\sin(8\pi t)$ volts.

- (1) Sketch the amplitude-modulated waveform.
- (2) What is the modulation index?

Soln:

The amplitude of the modulating signal, $A_m = 1v$, can be easily observed from the given modulating signal.

Carrier wave is given by, $c(t) = 2 \sin(8nt)$

The amplitude of the carrier wave, $A_c = 2v$

Time period, $T_m = 1s$

The angular frequency of the modulating signal is given by,

$$\omega_m = rac{2\pi}{T_m}$$

$$= 2\pi \text{ rad s}^{-1} \dots (1)$$

The angular frequency of carrier signal,

$$\omega_c=8\pi$$
 rad s⁻¹ ...(2)

From equations (1) and (2), we get,

$$\omega_c = 4\omega_m$$

The modulating signal having the amplitude-modulated waveform is shown in the figure:

(2) Modulation index, m =

$$\frac{A_m}{A_c} = \frac{1}{2} = 0.5.$$

Q.7: For an amplitude-modulated wave, the maximum amplitude is found to be 10V while the minimum amplitude is found to be 2V. Determine the modulation index, μ . What would be the value of μ if the minimum amplitude is zero volts?

NCERT Solutions for Class 12 Physics Chapter 15 – Communication Systems

Soln:

Given,

Maximum Amplitude, $A_{max} = 10 \text{ V}$

Minimum Amplitude, $A_{min} = 2 \text{ V}$

For a wave, the modulation index $\boldsymbol{\mu}$ is given by :

$$\frac{A_{max}-A_{min}}{A_{max}+A_{min}}$$

=

$$\frac{10-2}{10+2}$$

=

$$\frac{8}{12}$$
 = 0.67

If
$$A_{min} = 0$$
,

Then,

Q.8: Due to economic reasons, only the upper sideband of an AM wave is transmitted, but at the receiving station, there is a facility for generating the carrier. Show that if a device is available which can multiply two signals, it is possible to recover the modulating signal at the receiver station.

Soln: Let, ω_c be the carrier wave frequency

$$\boldsymbol{\omega_s}$$
 be the signal wave frequency Signal received, $V = V_1 \cos ($

 ω_c + ω_s)t

Instantaneous voltage of the carrier wave, $V_{\scriptscriptstyle m} = V_{\scriptscriptstyle c} \ cos$

 ω_c t

 $V.V_{in} = V_1 cos($

 $\begin{array}{l} \omega_c \\ + \\ \omega_s \\ \text{)t.} \ (\text{V}_c \cos \omega_c \\ \text{t}) \\ = \text{V}_1 \text{V}_c \left[\cos(\omega_c + \omega_s)t + \omega_c t + \cos(\omega_c + \omega_s)t - \omega_c t\right] \\ = \\ \frac{V_1 V_c}{2} \left[\cos(\omega_c + \omega_s)t + \omega_c t + \cos(\omega_c + \omega_s)t - \omega_c t\right] \\ = \\ \end{array}$

$$rac{V_1 V_c}{2} [cos(2\omega_c + \omega_s)t + cos\omega_s t]$$

NCERT Solutions for Class 12 Physics Chapter 15 – Communication Systems

The low pass filter allows only high-frequency signals to pass through it. The low-frequency signal ω_s is obstructed

by it. Thus, at the receiving station, we can record the modulating signal, frequency. $\frac{V_1V_C}{2}cos\omega_s t$ which is the signal

- The transmitter, transmission channel, and receiver are the three basic units of a communication system.
- Low frequencies cannot be transmitted to long distances. Therefore, they are superimposed on a high-frequency carrier signal by a process known as modulation.
- Two important forms of the communication system are Analog and Digital.
- The amplitude-modulated waves can be produced by the application of the message signal and the carrier wave to a non-linear device, followed by a bandpass filter.

