

Key Takeaways

2 - Two Kingdom Classification

Five Kingdom Classification - 3

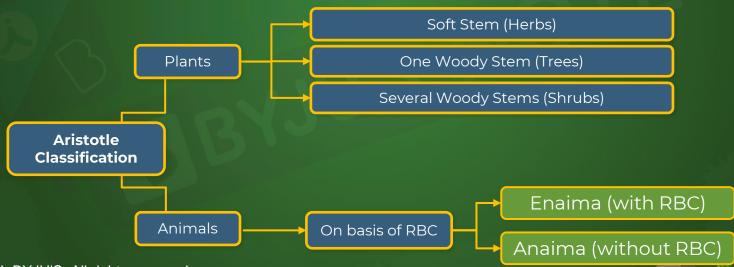
4 Six Kingdom Classification

Kingdom Monera

Characteristics

Classification of bacteria

6 Kingdom Protista



Aristotle Classification

Aristotle

- Father of biology
- Earliest scientific classification, based on simple morphological characters
- Classified living things as, plants and animals
- Merit: First novel attempt of classification of living organisms
- Demerit: No evolutionary relationships consideration

Two Kingdom Classification

Carolus Linnaeus

- Father of systematic botany
- Gave two kingdom classification
- Wrote Species Plantarum and Systema Naturae
- Main basis of classification Presence or absence of cell wall
- Demerits: Unable to differentiate between the following;
 - Unicellular and Multicellular
 - Prokaryotic and Eukaryotic
 - o Photosynthesis and Non photosynthetic organisms

Two kingdom classification (1758)

Plantae

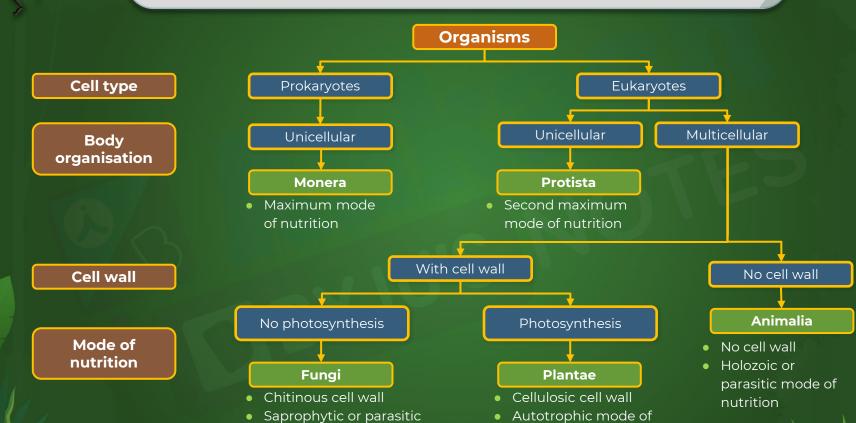
Animalia

Five Kingdom Classification

Robert H. Whittaker

- Proposed five kingdom classification in 1969
- Established Kingdom Fungi
- Based on: Cell structure, Body organisation, Mode of nutrition, Reproduction and Phylogenetic relationship

Limitations

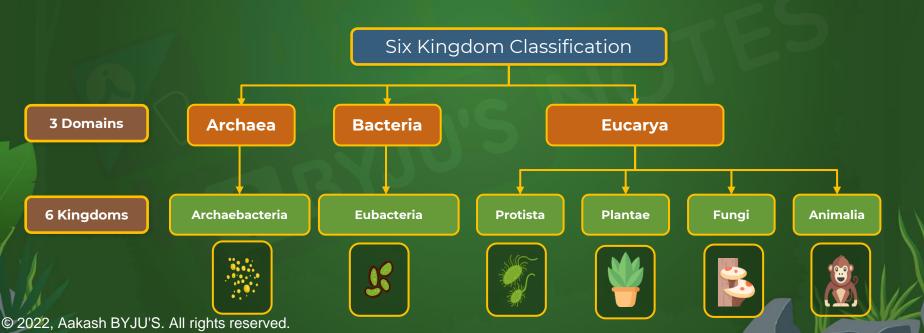

- Some unicellular algae (Chlamydomonas) are kept in Kingdom Protista, away from remaining algae placed in Kingdom Plantae.
- Chlorella and Chlamydomonas (autotrophic) placed with Paramecium and Amoeba (heterotrophic) in Kingdom Protista
- No place for lichens

Five Kingdom Classification

nutrition

mode of nutrition

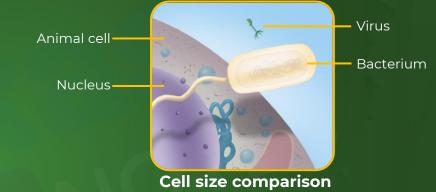
© 2022, Aakash BYJU'S. All rights reserved.

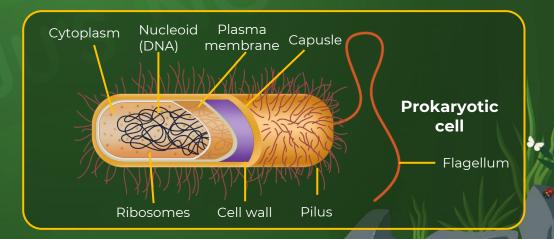


Six Kingdom Classification

Carl Woese

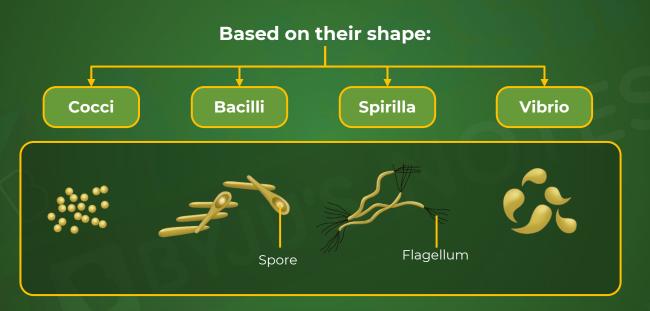
- Proposed six kingdom or three domain classification in 1990.
- The classification is based on the sequence of 16S rRNA which is supposed to be conserved and present across all kingdoms.





Characteristics

- Prokaryotes (includes all bacteria)
- Ubiquitous
- Double-stranded circular DNA
- Membrane-bound cell organelles absent
- Rigid cell wall
- 70s ribosomes
- Maybe motile (flagella) or non-motile
- Nutrition Heterotrophic (saprophytic/parasitic) or autotrophic



Classification of bacteria

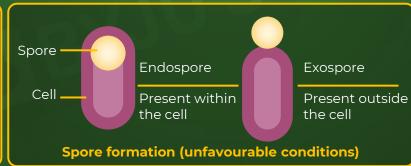
Reproduction in bacteria

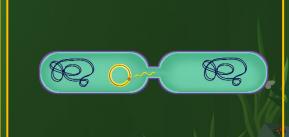
Asexual

Binary fission

The process in which the parent cell divides into two independent daughter cells.


Sporulation


The process in which the parent cell produces spore/spores, each of which can develop into an **independent** organism.


Sexual

Conjugation

It refers to the process by which one bacterium transfers its genetic material to another bacterium through direct contact.

Halophiles

Thermoacidophiles

Methanogens

Eubacteria

Cyanobacteria

Heterotrophic bacteria

Actinomycetes

Mycoplasma

Archaebacteria

- They are the most primitive group that occurs in extreme habitats.
- Their cell wall is made of pseudopeptidoglycan (pseudomurein).
- They are classified into three groups:

Halophiles

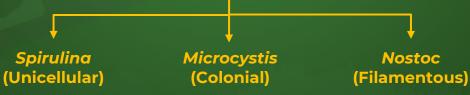
- They are found in extremely saline environments.
- They have been observed in The Great Salt Lake, U.S.A.
- E.g.: *Halobacterium*

Thermoacidophiles

- They are found in environments having high temperature and low pH.
- They have been observed in Yellowstone Acid pool, U.S.
- E.g.: Sulfolobus

Methanogens

- They are found in the gut of ruminants.
- They are responsible for the production of methane from dung.
- E.g.: **Methanobacterium**



Eubacteria

- They are also known as 'true bacteria' and their cell wall is made of peptidoglycan.
- They can be of the following types depending on the mode of nutrition:

Cyanobacteria Chemosynthetic Heterotrophic Actinomycetes Mycoplasma autotrophs bacteria

- Also known as blue-green algae.
- Photosynthetic autotrophs that contain chlorophyll a, phycocyanin and phycoerythrin
- Show gliding and oscillatory movements and are covered by a gelatinous sheath
- Found in freshwater, marine or terrestrial regions
- E.g.: Anabaena, Nostoc (both are heterocysts as well)
- Three types:

Eubacteria

Chemosynthetic autotrophs

- These bacteria oxidise inorganic substances such as nitrates, nitrites, and ammonia.
- Energy thus released is used for ATP production.

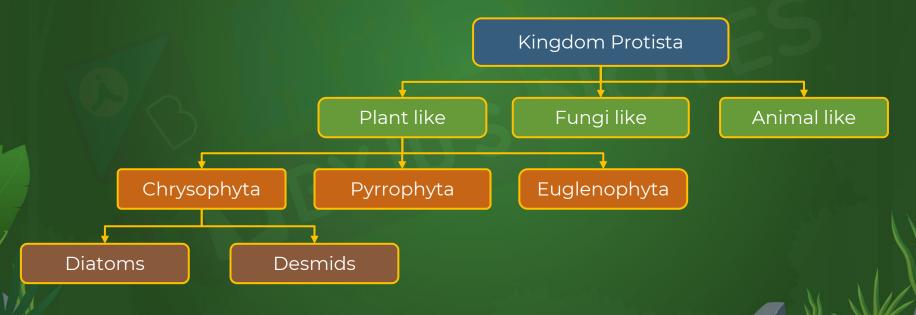
Heterotrophic bacteria

- Most abundant in nature
- Most of them are saprophytes
- Useful in:
 - Curd formation from milk
 - Nitrogen fixation in the roots of leguminous plants
 - Production of antibiotics
- Some are pathogenic
- Cause diseases in plants, animals, and humans (cholera, typhoid, etc.)

Eubacteria

Actinomycetes

- Mycelial bacteria that help decompose organic materials (chitin)
- Produce antibiotics
- Commonly found in soil and aquatic regions (both freshwater and marine)
- E.g.: **Streptomyces**


Mycoplasma

- Smallest living cells
- Also called PPLO (Pleuro Pneumonia Like Organisms)
- Lack cell wall and are non-motile
- Exhibit pleomorphism and can survive without oxygen
- Pathogenic to plants and animals

- They are **single-celled**/colonial eukaryotes that evolved from **prokaryotes (endosymbiosis)**.
- They are primarily aquatic and use cilia and flagella for locomotion.
- Their reproduction is sexual and asexual.

Chrysophyta

- Live in freshwater and marine environments
- Most are photosynthetic
- Float passively in water currents (plankton)
- They can be
 - o diatoms
 - desmids

Diatoms

- Chief producers of the ocean
- Unicellular/colonial, and cell wall contains silical
- Mostly non-motile or show gliding movement
- Dead diatoms form diatomaceous earth (fossilised geological deposit of nearly pure diatoms frustules)
- Used in polishing, filtration of oils and syrups, toothpaste, metal polishes and facial scrubs

Desmids

- Also known as **golden algae**
- Unicellular and microscopic
- Have a golden hue due to pigment fucoxanthin and oil droplets
- Food reserve is oil droplets

Pyrrophyta

- It consists of category of organisms called dinoflagellates.
- They are microscopic, unicellular and biflagellate organisms.
- Their cell walls have stiff cellulose plates.
- They are mostly marine and photosynthetic.
- They are yellow, green, brown, blue or red in appearance due to varying pigments.
- Toxins released are harmful to fishes.

Euglenophyta

- They consist of euglenoids among others.
- Euglenoids are unicellular, biflagellate and microscopic, freshwater organisms.
- They have pellicle instead of a cell wall.
- Mode of nutrition:
 - In the presence of sunlight, it carries out photosynthesis.
 - In the absence of sunlight, it has heterotrophic (holozoic) mode of nutrition.
 - Hence, it is a link between plants and animals.

Fungi-like protists/ Slime moulds

Cellular slime moulds

- They are amoeba-like cells with no cell wall.
- They move and capture by pseudopodia.
- They remain grouped but as unfused cells.

Acellular slime moulds

- It forms plasmodium under suitable conditions.
 - Plasmodium is the type of body which is made up of wall less multinucleated protoplasmic mass.
- They do not have a cell wall and are multinucleated.
- They grow and spread over several feet and form spores during unfavourable conditions.

Animal like protozoans

- Unicellular and mostly heterotrophs.
- They possess structures for movement.
- Mode of nutrition is holozoic or parasitic.
- They are of 4 types:

Amoeboid

- Live in freshwater, seawater or moist soil and show amoeboid movement (pseudopodia)
 Marine forms have silica
- shells on their surface

 Some may be parasites
- E.g.: Amoeba,
 Entamoeba histolytica

Flagellated

- Free-living or parasitic
- Flagellated
- Marine and freshwater organisms
- May cause diseases such as sleeping sickness
- Example: Trypanosoma brucei

Ciliated

- Aquatic
- Have a cavity that open to outside of cell surface
- Cilia help in feeding
- E.g.: Paramecium, Vorticella

Sporozoans

- Parasites of animals
- Cause diseases
- Have an infectious spore-like stage
- May have more than one host
- E.g. : **Plasmodium** (malarial parasite)

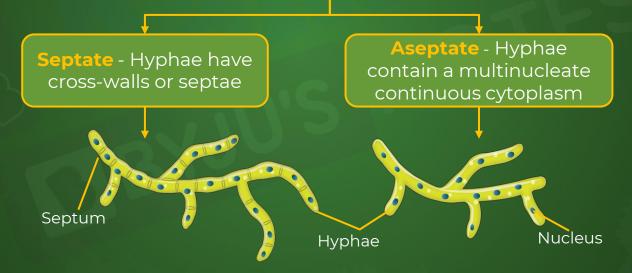
Characteristics

- Kingdom Fungi, also known as Mycota, was introduced to the Five Kingdom Classification by R.H. Whittaker.
- Fungi are eukaryotic decomposers.
- The study of fungi is known as mycology.
- Except for yeast, all fungi are multicellular organisms.
- Their cell wall is made up of chitin and polysaccharides.
- Food is stored in the cell in the form of glycogen and oil bodies.

Habitat

- Fungi are widely distributed; they prefer warm and humid environments.
- Predominantly terrestrial, but are found in water, air and on animals and plants.

Dikaryophase


 Some fungi exist in a special condition called dikaryon where each cell has 2 nuclei (n+n).

Structure of fungi

- Fungi have a filamentous body known as hyphae.
- The hyphae form a network known as the mycelium.
- The mycelium can be of two types:

Mode of nutrition

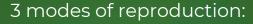
• Fungi are achlorophyllous - they lack chlorophyll; hence they are heterotrophic.

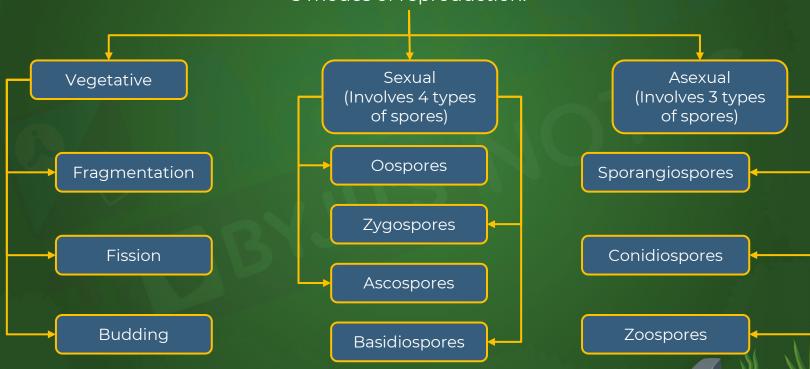
Saprophytic

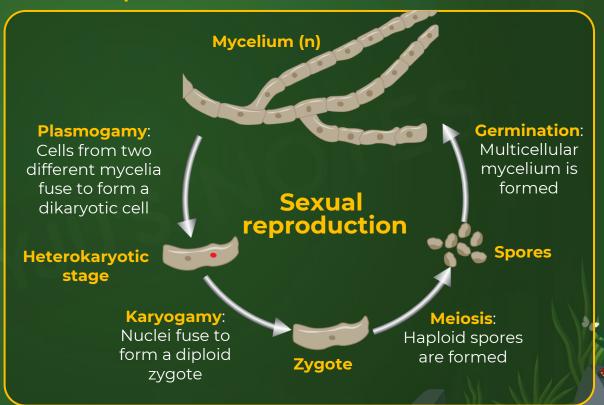
- Saprophytic fungi grow on dead plant and animal matter.
- They break down and recycle the soluble organic matter that they absorb from the dead substrates.

Parasitic

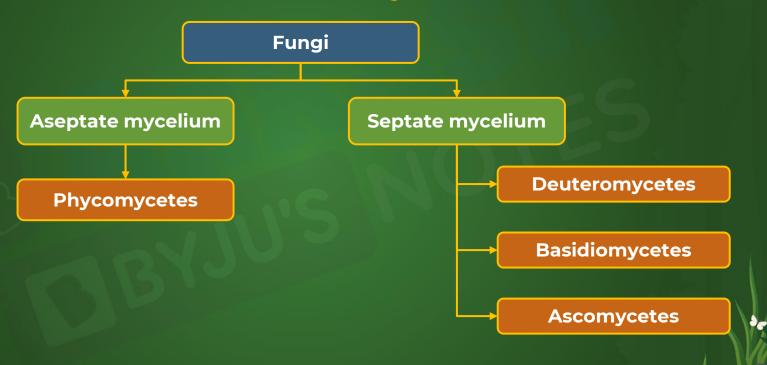
- These fungi grow on a living host and absorb nourishment from the host.
- In this process, they may harm and sometimes even kill the host.

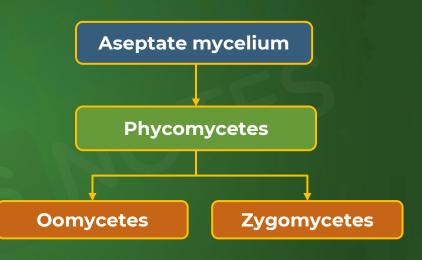

Symbiotic


- Fungi form a symbiotic association with organisms to derive nourishment.
- Example 1: Lichen Association of algae with fungi.
- Example 2: Mycorrhiza -Association of fungi with roots of higher plants.

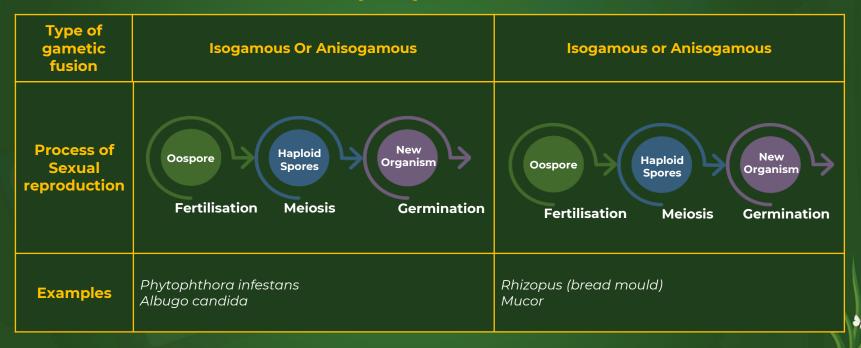

© 2022, Aakash BYJU'S. All rights reserved.

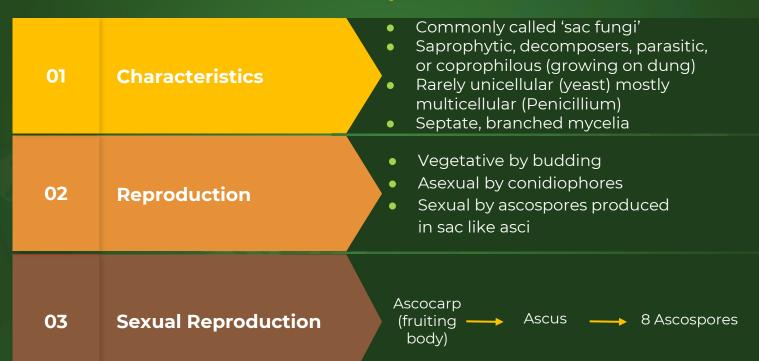
Sexual reproduction

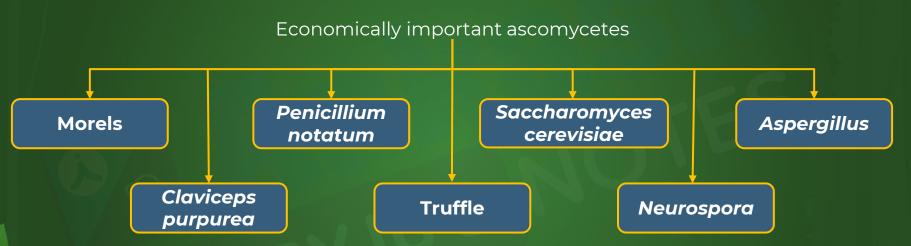

- During sexual reproduction, three types of gametic fusion are observed:
 - Isogamy: Fusion of gametes of similar size
 - Anisogamy: Fusion of one big and one small gamete
 - Oogamy: Fusion of a large, non-motile female gamete and a small, motile male gamete.



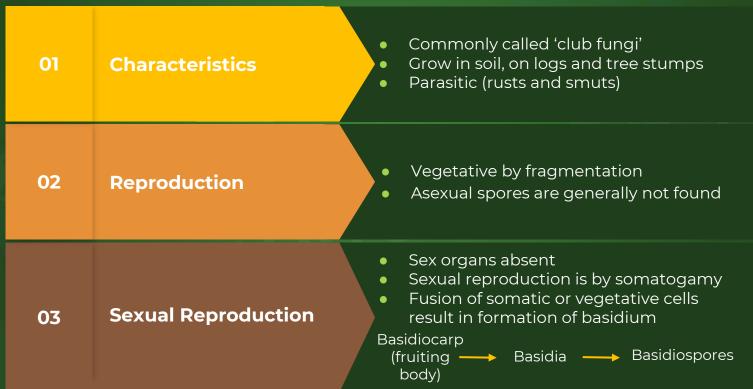
Phycomycetes


- They have aseptate or coenocytic mycelium.
- They can survive:
 - o In aquatic
 - In moist decaying wood as obligate parasites.
- Reproduction
 - Asexual reproduction by sporangiospores
 - Sexual reproduction by oospores/zygospores


Phycomycetes


Ascomycetes

Ascomycetes



- Aspergillus, Claviceps and Neurospora are used extensively in biochemical and genetic work.
- Morels and truffles are edible and used in delicacies.
- Penicillium and Saccharomyces can be saprophytic, decomposers, parasitic, or coprophilous.

Basidiomycetes

Basidiomycetes

Mushroom

Bracket fungi

Puffballs

Some important members of Basidiomycetes

- Cause **smuts**.
- Ears of cereals turn into black powder. Parasitic
- Seen in wheat, corn and Sorghum

Corn smut

- Cause rust disease
- Completes life cycle in two hosts wheat and barberry
- Forms four types of spores:
 - o Infecting wheat: Urediniospores, Teliospores, Basidiospores
 - o Infecting barberry: Aeciospore

Puccinia

Deuteromycetes

Also called as 'fungi imperfecti'.
 Mycelia are septate and branched.
 Saprophytic or parasitic mode of nutrition.
 Help in mineral cycling.
 Vegetative reproduction.
 Asexual reproduction by conidia.
 Sexual reproduction not reported.

Examples

Alternaria • Trichoderma

Colletotrichum

Kingdom Plantae

Characteristics of Kingdom Plantae:

- Autotrophic
- Eukaryotic
- Cell wall made up of cellulose
- Starch as reserve food material
- Some show partial heterotrophic nutrition:
 - Insectivorous (Venus Fly trap).
 - o Parasitic (*Cuscuta*).

Cuscuta

Venus fly trap

Kingdom Plantae

- Life cycle shows alternation of generation
 - Diploid sporophytic phase
 - Haploid gametophytic phase

Plants

Algae

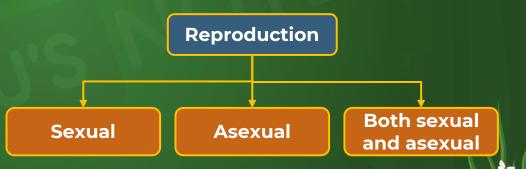
Bryophytes

Pteridophytes

Gymnosperms

Angiosperms

Kingdom Animalia

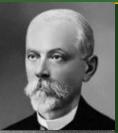


General characteristics

- Kingdom Animalia consists of several phyla of eukaryotic organisms.
- The cells lack a cell wall.
- They show tissue/organ/organ system level of organisation.
- A definite growth pattern can be seen.
- Complex sensory and neuromotor mechanisms can be seen in higher organisms.
- Most members of the kingdom show locomotion.

Mode of nutrition

- - Holozoic (by ingestion)
- The food consumed is stored in the form of glycogen or fat.



Viruses

Discovery

Dmitri Ivanovsky

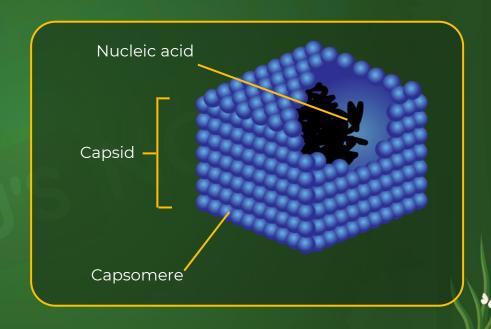
- Coined the term 'virus' (venom)
- Worked on **Tobacco Mosaic Virus**
- Found that virus was smaller than bacteria as they passed through bacteria proof filters

M.W. Beijerinck

- Demonstrated that extract from infected tobacco plants caused disease in healthy plants
- Called the extract 'Contagium vivum fluidum' (infectious living fluid)

W.M. Stanley

- Crystallised Tobacco Mosaic Virus (TMV)
- Crystals mostly consisted of proteins



Viruses

Structure

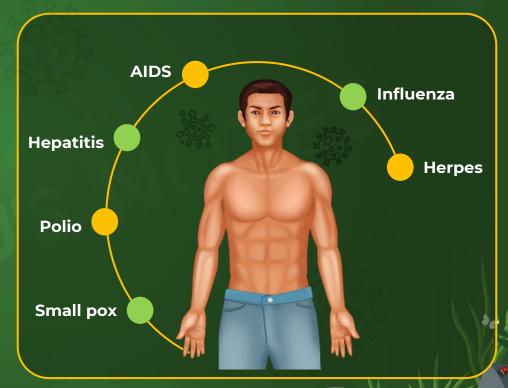
- They contain infectious genetic material (either DNA or RNA, never both)
- The infectious material is covered by a protein coat called capsid.
- Capsid is made of subunits called capsomeres.
 - Capsomeres are arranged in helical or polyhedral geometric forms.

Viruses

Characteristics

- They are obligate intracellular parasites and cause diseases in the host.
- Viruses are neither living nor non-living.

Living properties	Non-living properties
Contains genetic material (DNA or RNA)	Acellular
Surrounded by protein coat	Obligate parasites
Undergoes mutation	Inert crystalline structure
Reproduces in living host	Lacks enzyme system


Viral Infections

Tobacco mosaic disease in plants

- Caused by the Tobacco Mosaic Virus.
- Symptoms in plants include:
 - Leaf curling
 - Leaf rolling
 - Mosaic formation
 - Yellowing and vein clearing
 - Dwarfing

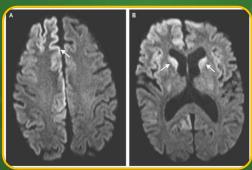
Viral infections in humans

Viroids

- Discovered by T.ODiener in 1971
- Consists of free RNA of low molecular weight
- Cause disease like the potato spindle tuber disease

Viroids	Virus
Lacks protein coat	Has protein coat
Genetic material is RNA	Genetic material can be DNA or RNA
Smaller	Larger
Viroids Structure	Virus structure Spike Nucleic acid Envelope

Prions



- Prions are abnormally folded proteins
- Similar in size to virus
- Cause neurodegenerative diseases
- Highly infectious (untreatable and fatal)

Scrapie infected sheep

Creutzfeldt Jacob Disease (CJD) in humans: <u>Degenerat</u>ive brain disorder

Bovine Spongiform Encephalopathy (BSE) or Mad Cow Disease

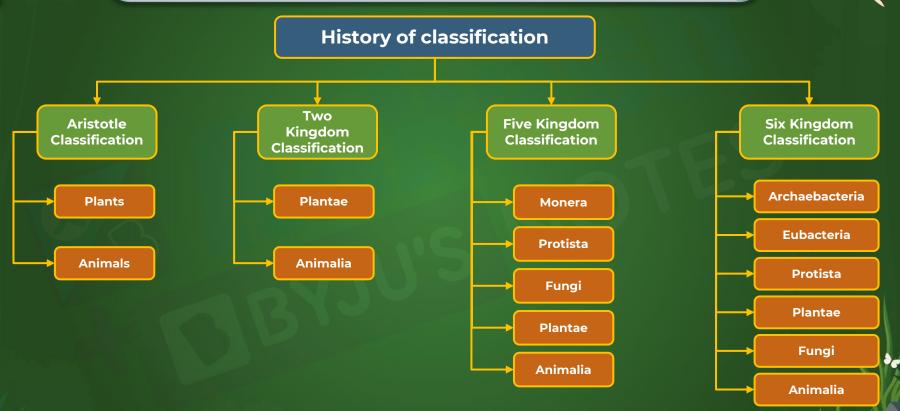
Lichen

Lichen is the **symbiotic** association between **algae** (**phycobiont**) or **Cyanobacteria** (**cyanobiont**) and **fungi** (**mycobiont**).

MYCOBIONT (fungus)
HETEROTROPHIC

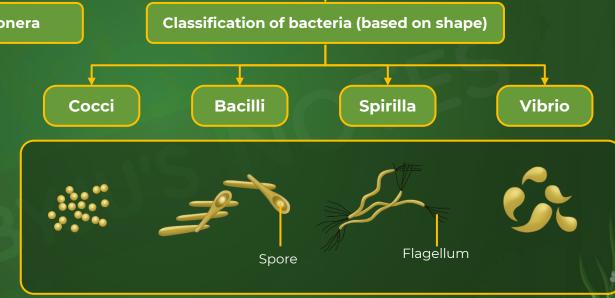
CYANOBIONT (Cyanobacteria) or PHYCOBIONT (green algae) AUTOTROPHIC

LICHEN (symbiosis)


Provides nutrition

Absorbs water, minerals and provides shelter

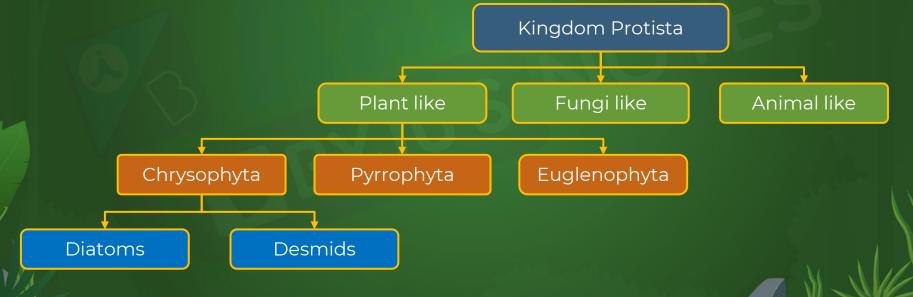
- Lichen are early colonizers of barren land
- It is also used in making Litmus indicators.
- They are also **bioindicators** of air pollution (sensitive to SO₂).



Kingdom Monera

Characteristics of Kingdom Monera

- Double-stranded circular DNA
- Membrane-bound cell organelles absent
- Rigid cell wall
- 70S ribosomes
- Chromatophores (containing pigment)
- Maybe motile (flagella) or non-motile
- Nutrition Heterotrophic (saprophytic/parasitic) or Autotrophic



Kingdom Protista

- They are single-celled/colonial eukaryotes that evolved from prokaryotes (endosymbiosis).
- They are primarily aquatic and use cilia and flagella for locomotion.
- Their reproduction is sexual and asexual.

Kingdom Fungi

Modes of nutrition

• Fungi are achlorophyllous - they lack chlorophyll; hence they are heterotrophic.

Saprophytic

Parasitic

Modes of reproduction

3 modes of reproduction:

Sexual

(Involves 4 types

(Involves 4 types of spores)

Asexual

Symbiotic

(Involves 3 types of spores)

Classification of fungi

Fungi

Aseptate mycelium

Phycomycetes

Septate mycelium

Deuteromycetes

Ascomycetes

Basidiomycetes

Mushroom Bracket fungi

Puffballs

© 2022, Aakash BYJU'S. All rights reserved.

Viruses

Scientists with major contribution in discovery of viruses.

Dmitri Ivanovsky M.W. Beijerinck

W.M. Stanley

Structure

- Viruses contain either DNA or RNA, never both.
- The infectious material is covered by a protein coat called capsid.