Welcome to
Q A PaEs
BBYU'S LIVE Solutions and colligative properties

Solution

By convention

containing more than one component dispersed on a molecular scale.

Note

If one of the components of a solution is water, it will always be considered as a solvent even when it is present in a very less amount.

Solvent determines the physical state in which the solution exists.

Types of solutions

Liquid solutions

Composition of a solution can be described by expressing its concentration.

Concentration can be expressed either qualitatively or quantitatively.

Percentage Concentration Terms

\% w/w	\% w/V	\% V/V
Amount of solute in grams dissolved per 100 g of solution.	Amount of solute in grams dissolved per 100 mL of solution.	Volume of a solute (in mL) dissolved per 100 mL of solution.
$\% \mathrm{w} / \mathrm{w}=\frac{\text { Weight of solute }(\mathrm{g})}{\text { Weight of solution }(\mathrm{g})} \times 100$	$\% \mathrm{w} / \mathrm{V}=\frac{\text { weight of solute }(\mathrm{g})}{\text { Volume of solution }(\mathrm{mL})} \times 100$	$\% \mathrm{~V} / \mathrm{V}==\text { volume of solute }(\mathrm{mL}) \text { volume of solution }(\mathrm{mL}) \times 100$

Strength (S)

Weight of solute (in gram) per litre $(1000 \mathrm{~mL})$ of solution.

$$
\text { Strength }(\mathrm{S})=\frac{\text { Weight of solute }(\mathrm{g})}{\text { Volume of solution }(\mathrm{L})}
$$

Molarity (M)

Molality (m)

Number of moles of solute per 1000 g or 1 kg of solvent.

Normality (N)

For Oxidising/Reducing Agents

Number of electrons involved in oxidation/ reduction half reaction per mole of oxidising/ reducing agent.

$$
5 \mathrm{e}^{-}+\mathrm{BH}^{+}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{O}
$$

$$
n \text {-factor }=5
$$

For Acid/Base and Salts

Number of moles of H^{+}ions displaced/ OH^{-}ions displaced per mole of acid/base.

For simple salts, n-factor is a total charge on cations or a total charge on anions.

Example: $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
n-factor = charge on the cation
$=2 \times 3=6$

Parts per Million (ppm)

Mole Fraction (x)

For a binary solution,

Ratio of the number of moles

 of a particular component to the total number of moles of all the components.$$
\begin{aligned}
& \mathcal{X}_{\text {solute }}=\frac{\text { Moles of solute }}{\text { Total moles in solutions }}=\frac{\mathrm{n}}{\mathrm{n}+\mathrm{N}} \\
& \mathcal{X}_{\text {solvent }}=\frac{\text { Moles of solvent }}{\text { Total moles in solutions }}=\frac{\mathrm{N}}{\mathrm{n}+\mathrm{N}}
\end{aligned}
$$

It is a solution in which more amount of solute can be dissolved at a particular temperature.

A solution in which no more solute can be dissolved at a particular temperature.

A solution which contains more amount of the dissolved solute than in the saturated solution at a particular temperature and pressure.

Solubility

Solubility of a substance is its maximum amount that can be dissolved in a specified amount of solvent (generally $\mathbf{1 0 0} \mathbf{g}$ of solvent) at a specified temperature to form a saturated solution.

1. Nature of Solvent $\&$ Gas

When a gas undergoes ionisation in a solvent, then it is highly soluble in that solvent.

Like dissolves like

Polar gases dissolve in polar solvents and non-polar gases in non-polar solvents.
E.g., HCI is highly soluble in water.

2. Effect of Temperature

Generally,
Dissolution of gas in liquid is exothermic

Temperature Solubility I

Oxygen dissolves only to a small extent in water. It is this dissolved oxygen which sustains all aquatic life.

Solubility of gases increases with decrease of temperature. It is due to this reason that aquatic species are more comfortable in cold waters rather than in warm waters.

3. Effect of Pressure (Henry's Law)

The solubility of a gas in a liquid at a given temperature is directly proportional to its partial pressure, at which, it is dissolved.

P is the partial pressure of gas in equilibrium with the solution.
$\mathbf{K}_{\mathbf{H}}$ is Henry's law constant.
\mathcal{X} is the mole fraction of the unreacted gas in the solution.

Characteristics of Henry's Law Constant

d K_{H} value increases with increase in temperature.

Higher the value of K_{H} of a gas, lower will be its solubility.
for the same solvent.
c $\quad \mathbf{K}_{\mathbf{H}}$ value of gas is different in different solvents.

Graphical Analysis (Henry's Isotherm)

Plot of P vs \mathcal{X} is a straight line passing through the origin with slope equal to K_{H}.

Note

If a mixture of gases is brought in contact with a solvent, each constituent gas dissolves in proportion to its partial pressure.

Henry's law applies to each gas independent of the pressure of other gas.

Application of Henry's Law

(a)

To increase the solubility of CO_{2} in soft drinks and soda water, the bottle is sealed under high pressure.

At high altitudes, the partial
(b) pressure of oxygen is less than that at the ground level.

Low blood oxygen level causes anoxia.

Application of Henry's Law

Scuba divers must cope with high concentration of dissolved gases while, breathing air at high pressure.

The bubble blocks the capillaries and creates a medical condition known as bends that are painful and dangerous to life.

To avoid bends as well as toxic effects of high concentration of nitrogen in blood, tanks used by scuba divers are filled with air diluted with helium.

Limitations of Henry's Law

Henry's law is valid only under the following conditions:

1 Pressure of the gas is not too high.

3 The gas should not undergo any chemical reaction with the solvent.

4 The gas should not undergo dissociation
in solution.

Vapour Pressure

Evaporation of a Liquid in a Closed Container

As the gaseous particles bounce around, some of them will hit the surface of the liquid again, and be trapped there.

Evaporation and Condensation

An equilibrium is set up rapidly in which, the number of particles leaving the surface is exactly balanced by the number rejoining it.

At equilibrium,
$\begin{gathered}\text { Rate of } \\ \text { evaporation }\end{gathered}=\begin{gathered}\text { Rate of } \\ \text { condensation }\end{gathered}$

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$$
\mathrm{K}_{\mathrm{p}}=\mathrm{P}_{\mathrm{eq}}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right)
$$

$$
\mathrm{K}_{\mathrm{p}} \quad=\quad \text { V.P. }
$$

Vapour Pressure of Solution

Vapour Pressure

Pressure exerted
by the vapour of solvent 'A' and solute ' B ' in equilibrium with the liquid phase.

Vapour pressure of a liquid does not depend on:

Amount of liquid taken

2 Surface area of the liquid

3 Volume or shape of the container

Vapour Pressure of Solution

(b)
 It depends upon the nature of the liquid

Intermolecular attractive forces \downarrow

Boiling point

Loosely held molecules escape more easily into the vapour phase.

Boiling Point

Temperature at which the vapour pressure of a liquid is equal to the external pressure.

At normal b.p., the vapour pressure of the pure liquid = 1 atm

Vapour Pressure of Solution

V.P.
K.E.

Temperature \uparrow

K.E. of particles \uparrow

As the temperature of a liquid increases, the kinetic energy of its molecules also increases. As the kinetic energy of the molecules increases, the number of molecules transitioning into a vapor also increases, thereby increasing the vapor pressure. In the first container (extreme left) the temperature is lowest and in the third one (extreme right) the temperature is maximum, consequently the number of molecules shown in the container is also maximum.

Temperature

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}>0
$$

According to Le Chatelier principle, increasing the temperature of a system in a dynamic equilibrium favours the endothermic change.

Raoult's Law

In the solution of volatile liquids, the partial vapour pressure of each component is directly proportional to its mole fraction.

$P_{A} \propto \mathcal{X}_{A} \quad \mathbf{P}_{A}=\mathcal{X}_{A} \mathbf{P}_{A}^{\circ}$

Vapour pressure of pure component ' A ' at a given temperature

For Binary Solutions of A \& B

Relation between Total Pressure vs Mole Fraction

$$
P_{T}=\quad \mathcal{X}_{A} P_{A}^{0}+\mathcal{X}_{B} P_{B}^{0}
$$

$$
P_{T}=\left(P_{A}^{0}-P_{B}^{0}\right) \mathcal{X}_{A}+P_{B}^{0}
$$

This represents equation of a straight line of P_{T} vs \mathcal{X}_{A}

$$
\text { If } P_{A}^{0}>P_{B}^{0}
$$

A is more volatile than

$$
\text { b.p. of } A<b . p . \text { of } B
$$

Composition of Vapour Phase

$\mathbf{P}_{\mathbf{A}}=\quad \mathrm{y}_{\mathrm{A}} \mathrm{P}_{\mathrm{T}} \quad$ Dalton's Law

Similarly,

$$
\mathbf{P}_{\mathrm{B}}=\mathrm{y}_{\mathrm{B}} P_{\mathrm{T}}=\mathcal{X}_{\mathrm{B}} P_{\mathrm{B}}^{0}
$$

P_{T} in Terms of Composition of Vapour Phase
$\frac{1}{P_{T}}=\frac{y_{A}}{P_{A}^{\circ}}+\frac{y_{B}}{P_{B}^{\circ}}$

$$
\frac{y_{A} P_{T}}{P_{A}^{\circ}}+\frac{y_{B} P_{T}}{P_{B}^{\circ}}=1
$$

$$
=\quad \frac{y_{A}}{P_{A}^{\circ}}+\frac{1-y_{A}}{P_{B}^{\circ}}
$$

$$
\Rightarrow \quad \frac{1}{P_{T}} \quad=\quad \frac{y_{A}}{P_{A}^{0}}+\frac{y_{B}}{P_{B}^{0}}
$$

$P_{T}=\frac{P_{A}^{\circ} P_{B}^{0}}{P_{A}^{0}+\left(P_{B}^{0}-P_{A}^{0}\right) y_{A}}$

P_{T} in Terms of Composition of Vapour Phase

Did You Know?

Compositions of the liquid and vapour that are in mutual equilibrium are not necessarily the same.

The vapour will be richer in the more volatile component, if the mole fraction of components in liquid phase is comparable.

Characteristics of ideal solution

(i) Ideal Solutions obey Raoult's law over the entire range of concentration
(ii) If the forces of attraction between $\mathbf{A}-\mathbf{A}, \mathbf{B}-\mathbf{B}$ is similar to $\mathbf{A}-\mathbf{B}$, then \mathbf{A} and

B will form ideal solution.
(iii) $\Delta_{\text {mix }} \mathbf{H}=\mathbf{0}$, i.e., there should not be an enthalpy change when components of ideal solutions are mixed.

$\mathcal{X}_{\mathrm{A}}=1$	Mole Fraction	$\mathcal{X}_{\mathrm{A}}=0$
$\mathcal{X}_{\mathrm{B}}=0$	$\mathcal{X}_{\mathrm{B}}=1$	

$\Delta_{\text {mix }} \mathbf{V}=0,(1 \mathrm{~L}+1 \mathrm{~L}=2 \mathrm{~L})$ i.e., there should not be a change in volume on mixing.

Characteristics of ideal solution

Examples

Non-Ideal Solution

Solutions that do not obey Raoult's law over the entire range of concentration

If the forces of attraction between $\mathbf{A}-\mathbf{A}$, $\mathrm{B}-\mathrm{B}$ is different from $\mathbf{A}-\mathrm{B}$, then A and B will form non-ideal solution.

Characteristics:

1 Raoult's law is not obeyed.
\DeltaV
\DeltaV

Non-Ideal with Positive Deviation

If the forces of attraction between
$A-A, B-B$ is stronger than $A-B$

Partial pressure of each component
A and B is higher than that calculated from Raoult's law.

Hence, the total pressure over the solution is also higher than the solutions, if were ideal.

Non-Ideal with Positive Deviation

Vapour pressure

$$
\begin{array}{lll}
x_{A}=1 & \text { Mole fraction } & x_{A}=0 \\
x_{B}=0 & & x_{B}=1
\end{array}
$$

Dashed lines represent vapour pressures and total pressure corresponding to ideal solution

Characteristics

1
 Raoult's law is not obeyed.

$$
3 \quad \Delta H_{\text {mix }}>0
$$

$$
2 \quad \Delta V_{\text {mix }}>0(7 L+1 L>2 L)
$$

Intermolecular forces between molecules of A and B are weaker

When the liquids are mixed, less heat is evolved when the new attractions are set up
than was absorbed to break the original ones.

Characteristics

Examples

$$
\begin{aligned}
& 4 \int \begin{array}{l}
\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {sys }}>0 \Rightarrow \text { randomness } \\
\text { increases on mixing. }
\end{array} \\
& 5 \quad\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {surr }}=0 \Rightarrow\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {surr }}=\frac{-\mathrm{q}_{\text {sys }}}{T}<0 \\
& 6 \quad\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {univ }}>0 \Rightarrow \text { Mixing is a } \\
& \text { Spontaneous process }
\end{aligned}
$$

Water and ethanol

Chloroform and water

Ethanol and acetone

Non-Ideal with Negative Deviation

If the forces of attraction between
A-A, B-B are weaker than A-B

Partial pressure of each component A and B is lower than that calculated from Raoult's law.

Hence, the total pressure over the solution is also lower than the solutions, if were ideal.

Non-Ideal with Negative Deviation

Dashed lines represent vapour pressures and total pressure corresponding to ideal solution.

B.P. of solution
$>$
B.P. of both A and B

Characteristics

Raoult's law is not obeyed.

$$
\Delta V_{\text {mix }}<0(1 L+1 L<2 L)
$$

Intermolecular forces between molecules of A and B are stronger than those in the pure liquids.

When the liquids are mixed, more heat is evolved when the new attractions are set up than was absorbed to break the original ones.

Characteristics

4
$4 \quad\left(\Delta_{\text {mix }} \mathbf{S}\right)_{\text {sys }}>0 \Rightarrow$ randomness
$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {sys }}>0 \Rightarrow$ randomness
increases on mixing.

Examples

$5\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {surr }}=0 \Rightarrow\left(\Delta_{\text {mix }} S\right)_{\text {surr }} \stackrel{-\mathrm{q}_{\text {sys }}}{T}>0$

6
$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {univ }}>0 \Rightarrow$ Mixing is a spontaneous process

Chloroform and methyl acetate

Comparing Ideal \& Non-Ideal Solutions

Non-ideal solutions

Ideal solutions

Positive deviation Negative deviation

$\mathrm{P}_{\mathrm{T}}=\mathcal{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}^{\circ}+\mathcal{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}^{\circ}$	$\mathrm{P}_{\mathrm{T}}>\mathcal{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}^{\circ}+\mathcal{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}^{\circ}$	$\mathrm{P}_{\mathrm{T}}<\mathcal{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}^{0}+\mathcal{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}{ }^{\circ}$
A-A \& B-B molecular interaction are similar as A-B	A-A \& B-B molecular interaction are stronger than A-B	A-A \& B-B molecular interaction are weaker than $A-B$
$\Delta_{\text {mix }} \mathrm{H}=0$	$\Delta_{\text {mix }} \mathrm{H}>0$	$\Delta_{\text {mix }} \mathrm{H}<0$
$\Delta_{\text {mix }} \mathrm{V}=0$	$\Delta_{\text {mix }} \mathrm{V}>0$	$\Delta_{\text {mix }} \mathrm{V}<0$

Ideal solutions	Non-ideal solutions	
	Positive deviation	Negative deviation
$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {sys }}>0$	$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {sys }}>0$	$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {sys }}>0$
$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {surr }}=0$	$\left(\triangle_{\text {mix }} \mathrm{S}\right)_{\text {surr }}<0$	$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {surr }}>0$
$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {univ }}>0$	$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {univ }}>0$	$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {univ }}>0$
$\left(\Delta_{\text {mix }} G\right)_{\text {sys }}<0$	$\left(\Delta_{\text {mix }} G\right)_{\text {sys }}<0$	$\left(\Delta_{\text {mix }} G\right)_{\text {sys }}<0$

Azeotropic Mixtures

Very large deviations from ideality lead to a special class of mixtures known as azeotropes, azeotropic mixtures, or constant-boiling mixtures.

Composition of liquid mixtures at which, distillation cannot separate the two liquids because the condensate has the same composition as that of the azeotropic liquid.

Liquid mixtures which boils at a constant temperature and can be distilled without any change in the composition.

A boiling liquid mixture at the azeotropic composition produces vapours of exactly the same composition as that of the liquid.

Azeotropes are of two types:

1. Maximum boiling azeotropes
2. Minimum boiling azeotropes

Minimum Boiling Azeotropes

Minimum Boiling Azeotropes

Non-ideal solutions showing large positive deviation from Raoult's law, form minimum boiling azeotropes that boil at a temperature lower than the boiling points of its components ' A ' and ' B '.

Non-ideal solutions showing large negative deviation from Raoult's law, form maximum boiling azeotropes that boil at a temperature higher than the boiling points of its components ' A ' and ' B '.

A mixture of HNO_{3} and $\mathrm{H}_{2} \mathrm{O}$ containing $\approx 68 \% \mathrm{HNO}_{3}$ and 32% water by mass

Formic acid - water mixture containing 77.6% formic acid and 22.4% water by mass.

Minimum Boiling Azeotropes

Maximum Boiling Azeotropes

Minimum Boiling Azeotropes

Maximum Boiling Azeotropes

Dissolution \& Crystallisation

When a solid solute is added to the solvent, some solute dissolve and its concentration increases in the solution.

At equilibrium

Rate of dissolution

Rate of crystallisation

Some solute particles in the solution collide with the other solid solute particles
and get separated out of the solution.

Equilibrium

At this stage, the concentration of solute in solution will remain constant under the given temperature and pressure conditions.

I
I
v
Such a solution is said to be saturated with the given solute.

Factors affecting Solubility of Solid in liquid

1. Nature of Solvent $\&$ Solute

Like dissolves like

Polar solutes dissolve in polar solvents and non-polar solutes dissolve in non-polar solvents.

Sodium chloride dissolves readily in water, whereas naphthalene and anthracene do not.

Naphthalene and anthracene dissolve readily in benzene but sodium chloride do not.

2. Effect of Temperature

By Le Chatelier's principle,

Solubility
1

Solute + Solvent

Solution

By Le Chatelier's principle,
 Solubility

3. Effect Of Pressure

Pressure does not have any significant effect on the solubility of solids in liquids.

Solids and liquids are highly incompressible, and practically remain unaffected by changes in the pressure.

Colligative Properties

The properties of the solution
Relative lowering of the vapour pressure that are dependent only on the total number of solute particles relative to
solvent/solution are known as colligative properties.

They are not dependent on the nature of particle i.e., shape, size, charge, etc.

Abnormal Colligative Property

If solute gets associated or dissociated in solution, then experimental/observed/actual value of colligative property will be different from the theoretically predicted value.

Abnormality in colligative property can be calculated in terms of van't-Hoff factor.

For electrolytic solutes, the number of particles would be different from the number of particles actually added due to dissociation or association of the solute.
$\mathrm{NaCl}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(I) \longrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

Example: On adding 1 mole of NaCl in excess water gives 1 mole of Na^{+}and 1 mole of Cl^{-}ions i.e. 2 moles of solute.

van't Hoff Factor (i)

The actual extent of dissociation/ association can be expressed with a correction factor known as van't Hoff factor (i).
i = $\quad \frac{\text { Observed colligative property }}{\text { Calculated colligative property }}$

Moles of solute particles in solution after dissociation/ association

van't-Hoff Factor (i)

i for Dissociation of Electrolyte

$$
A_{x} B_{y}(a q) \rightleftharpoons x A^{y+}+y^{x-}
$$

$$
\mathrm{t}=0
$$

C
$0 \quad 0$

$$
t=t_{e q} \quad C(1-\alpha) \quad x C \alpha \quad y C \alpha
$$

At equilibrium, Net concentration $=\mathrm{C}-\mathrm{C} \alpha+\mathrm{xC} \alpha+\mathrm{yC} \alpha$

$$
=C[1+(x+y-1) \alpha]=C[1+(n-1) \alpha]
$$

i for Dissociation of Electrolyte

Examples

i for Association of Electrolyte

$\mathrm{nA} \rightleftharpoons \mathrm{A}_{\mathrm{n}}$

At equilibrium,

$$
\begin{array}{ccc}
t=0 & C & 0 \\
t=\text { teq } & C(1-\beta) & \frac{C \beta}{n}
\end{array}
$$

Net concentration $=C-C \beta+\frac{C \beta}{n}$

$$
=C\left[1+\left(\frac{1}{n}-1\right) \beta\right]
$$

i for Association of Electrolyte

$$
\begin{aligned}
& \mathbf{i} \frac{C\left[1+\left(\frac{1}{n}-1\right) \beta\right]}{C}=0.5 \\
& \left.\mathbf{i}=\begin{array}{c}
\text { Dimerisation of } \\
\mathrm{CH}_{3} \mathrm{COOH} \text { in benzene } \\
(100 \%)
\end{array}\right) \\
& \mathbf{i}=1+\left(\frac{1}{n}-1\right) \beta
\end{aligned}
$$

1. Relative Lowering of Vapour Pressure (RLVP)

V.P. of a solution containing a non-volatile solute (solid solute) is always found to be less than the V.P. of the pure solvent.

1. Relative Lowering of Vapour Pressure (RLVP)

V.P. of a solution containing a non-volatile solute (solid solute) is always found to be less than the V.P. of the pure solvent.

Some of the solute molecules will occupy some surface area of the solution.

1. Relative Lowering of Vapour Pressure

Lowering in V.P. $=P^{\circ}-P_{S}=\Delta P$

$$
\begin{aligned}
& \text { Relative lowering } \\
& \text { in vapour pressure }
\end{aligned}=\frac{\Delta \mathrm{P}}{\mathrm{P}^{\circ}}
$$

Relative lowering of the vapour pressure is a colligative property, whereas, lowering in the vapour pressure is not.

Note

Raoult's Law (For non-volatile solutes)

The vapour pressure of a solution of a non-volatile solute is equal to the vapour pressure of the pure solvent at that temperature multiplied by its mole fraction.
$\mathrm{P}_{\mathrm{S}}=\mathcal{X}_{\text {solvent }} \mathrm{P}^{\circ}=\left(1-\mathcal{X}_{\text {solute }}\right) \mathrm{P}^{\circ}$
RLVP $=\frac{P^{\circ}-P_{S}}{P^{\circ}}=\mathcal{X}_{\text {solute }}=\frac{n}{n+N}$
$\mathrm{n}=$ Number of moles of non-volatile solute
$\mathbf{N}=$ Number of moles of solvent in the solution

1. Relative Lowering of Vapour Pressure

$$
\begin{aligned}
\frac{P^{0}}{P^{0}-P_{S}}=\frac{n+N}{n}=1+\frac{N}{n} & \frac{P^{0}-P_{S}}{P_{S}}=\frac{w_{\text {solute }}}{M_{\text {solute }}} \times \frac{M_{\text {solvent }}}{w_{\text {solvent }}} \\
\frac{N}{n}=\frac{P^{0}}{P^{0}-P_{S}}-1=\frac{P_{S}}{P^{0}-P_{S}} & =\frac{W_{\text {solute }}}{M_{\text {solute }}} \times \frac{M_{\text {solvent }}}{W_{\text {solvent }}} \times \frac{1000}{1000} \\
\frac{P^{0}-P_{S}}{P_{S}}=\frac{n}{N} & \begin{array}{l}
w=\text { Weight of species } \\
M=\text { Molar mass of species }
\end{array}
\end{aligned}
$$

1. Relative Lowering of Vapour Pressure

$$
\frac{P^{\circ}-P_{S}}{P_{S}}=\frac{W_{\text {solute }}}{M_{\text {solute }}} \times \frac{1000}{W_{\text {solvent }}} \times \frac{M_{\text {solvent }}}{1000}
$$

If the solute gets associated or dissociated
$\frac{P^{\circ}-P_{s}}{P_{s}}=$ Molality $\times \frac{M_{\text {solvent }}}{1000}$

$$
\frac{P^{\circ}-P_{s}}{P^{\circ}}=\frac{i \times n}{i \times n+N}
$$

$$
\frac{P^{\circ}-P_{s}}{P_{s}}=\frac{i \times n}{N}=i \times \text { Molality } \times \frac{M_{\text {solvent }}}{1000}
$$

Boiling Point

Temperature at which the V.P. of a liquid is equal to the external pressure present at the surface of the liquid.

At normal B.P., V.P. of the pure liquid
$=\quad 1 \mathrm{~atm}$
2. Elevation in Boiling Point

When a non-volatile solute is added into a volatile liquid to form solution, V.P. decreases.

The solution need to be heated to a higher temperature to boil it, so that V.P. becomes equal to external pressure.

2. Elevation in Boiling Point

For example,

Atmospheric pressure

Pure
solvent
Atmospheric pressure

Lower vapour pressure

Vapour pressure of an aqueous solution of sucrose is less than 1.013 bar at 373.15 K .

To make this solution boil, its vapour pressure must be increased to 1.013 bar by raising the temperature above the boiling temperature of the pure solvent (water).

Thus,

The boiling point of a solution

The boiling point of the pure solvent

2. Elevation in Boiling Point

$$
\begin{gathered}
\mathbf{T}_{\mathbf{b}}=B . P . \text { of solution }(K) \\
T_{b}^{0}=\text { B.P. of pure solvent }(K)
\end{gathered}
$$

$$
\text { V.P. of solution }<\quad \text { V.P. of pure solvent }
$$

Hence, to make the V.P. equal to $P_{\text {ext' }}$ we have to heat the solution by a greater amount in comparison to pure solvent.

2. Elevation in Boiling Point

K_{b}

It is equal to elevation in boiling point of 1 molal solution.

$$
\mathrm{K}_{\mathrm{b}}=\frac{\mathrm{RT} \mathrm{o}_{\mathrm{b}}^{\mathrm{o}^{2}} \mathrm{M}}{1000 \times \Delta H_{\mathrm{vap}}}
$$

- T_{b}^{0} is B.P. of pure solvent (K)
- M is the molar mass of solvent in $\mathrm{g} / \mathrm{mol}$
- $\Delta H_{\text {vap }}$ is the molar enthalpy of vapourisation of the solvent ($\mathrm{J} / \mathrm{mol}$)
- $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$

Note

If solute gets associated/dissociated then $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \times \mathrm{K}_{\mathrm{b}} \times$ Molality
K_{b} is the property of solvent

3 Elevation in B.P. is proportional to the lowering of vapour pressure.

Freezing Point (F.P.)

Temperature at which, the vapour pressure of a solid becomes equal to the vapour pressure of liquid at 1 atm is called normal freezing point.

3. Depression in Freezing Point

When a non-volatile solute is dissolved in the solvent, the V.P. of the solvent in the solution decreases.
V.P. of solid and liquid solvent will become equal at a lower temperature, i.e., F.P. of solution is lower than that of a pure solvent.

3. Depression in Freezing Point

ΔT_{f}

The difference between
F.P. of a pure solvent \mathbf{T}_{f}° and F.P. of its solution \mathbf{T}_{f}.

m Molality
$\mathrm{K}_{\mathrm{f}}=$ F.P. depression constant or molal depression constant or cryoscopic constant.

Cryoscopic Constant (K_{f})

- T_{f}^{0} is F.P. of pure solvent (K)
- M is the molar mass of solvent in $\mathrm{g} / \mathrm{mol}$
- $\Delta H_{\text {fus }}$ is the molar enthalpy of fusion of the solvent ($\mathrm{J} / \mathrm{mol}$)
- $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$

Note

Depression in freezing point is proportional to the lowering of vapour pressure i.e. $\Delta \mathrm{T}_{\mathrm{f}} \propto \Delta \mathrm{P}$

2
If solute gets associated/dissociated then $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{K}_{\mathrm{f}} \times$ Molality

At freezing point or below it,
3 only solvent molecules will freeze \& not solute molecules.

Osmosis

The spontaneous flow of solvent particles from solvent side to solution side, or from solution of low concentration side to solution of high concentration side through a semi-permeable membrane (SPM).

Semi-permeable Membrane (SPM)

A membrane that allows only solvent particles to move across it.

Semi-permeable Membrane (SPM)

Natural SPM

Artificial SPM

Example of Osmosis

A raw mango placed in a i concentrated salt solution loses water \& shrivel into pickle.

People taking a lot of salt, experience water retention in tissue cells. This results in puffiness or swelling called edema.

4. Osmotic Pressure (II)

The external pressure that must be applied on the solution side to just stop the process of osmosis.

$$
P_{\text {ext }}=\Pi
$$

4. Osmotic Pressure (II)

4. Osmotic Pressure (II)

4. Osmotic Pressure (II)

If two solutions of concentration $\mathrm{C}_{1} \& \mathrm{C}_{2}$ are kept separated by SPM, and $\mathrm{C}_{1}>\mathrm{C}_{2}$, then the solvent particle movement take place from lower to higher concentration.

So, an extra pressure is applied on the higher concentration side to stop osmosis.

$$
P_{\text {ext }}=\Pi_{1}-\Pi_{2}
$$

Note

Osmotic pressure of very dilute solutions is also quite significant. So, its measurement in lab is very easy.

If solute gets associated or dissociated then II = ix CRT

Reverse Osmosis

If the pressure applied on the solution side is more than the osmotic pressure of the solution, then the solvent particles will move from solution to solvent side.

Based on the difference in osmotic pressure

Isotonic Solution

Two solutions having same osmotic pressure are considered as isotonic solution.

$$
\Pi_{1} \quad=\quad \Pi_{2}
$$

Hypotonic \& Hypertonic Solutions

Hypotonic \& Hypertonic Solutions

Types of Solutions

Plasmolysis

When the cell is placed in a solution having its osmotic pressure greater than that of the cell sap, water passes out of the cell due to osmosis.

Consequently, the cell material shrinks gradually. The gradual shrinking of the cell material is called plasmolysis.

Application of Osmotic Pressure

a.

Determination of molecular mass of the solute.

$$
M_{\text {solute }}=\frac{W R T}{\Pi V}
$$

- w is mass of solute
- V is volume of the solution
- II is osmotic pressure of the solution
- T is temperature
- R is universal gas constant

Widely used to determine molar masses of proteins and other biomolecules, as they are generally not stable at higher temperatures

This method has the advantage over other methods as pressure measurement is around the room temperature.

Note

If solute gets associated or dissociated then theoretical molar mass of solute will
be different from experimentally
calculated molar mass

Theoretical molar mass of substance
i $=$
Experimental molar mass of the substance

Application of Osmotic Pressure

b. Desalination of water by reverse osmosis

Artificial kidney removes waste products from blood through osmosis.

