

Key Takeaways

Introduction to Genetics

Mendel's Hybridisation Experiments

Significance and Unappreciation

Important Terminology

Pea Plant - Merits and Characters

Resurface of Mendel's work

Monohybrid Cross

Punnett square

Reciprocal Cross

Back Cross

Mendel's Observation

Test Cross

Concept of Dominance

Exceptions to Mendelian Inheritance

Incomplete dominance

Multiple alleles

Co-dominance

Dihybrid Cross

Law of Independent Assortment

Shortcut Formulas

Two Genes Interactions

Chromosomal Theory of Inheritance

Sutton and Boveri experiments

Linkage and Recombination

Polygenic Inheritance and Pleiotropism

Sex determination

Based on sex chromosomes

Based on haplodiploid system

Mutation

Chromosomal Aberrations

Gene Mutations

Genetic disorders

Mendelian Disorders

Chromosomal Disorders

Cytoplasmic Inheritance

Summary

Introduction to Genetics

Branch of biology dealing with the study of genes and its inheritance.

Genetics

Gene: Distinct sequence of nucleotides of DNA that codes for a specific protein. It is the physical and functional unit of heredity. Wilhelm Johannsen coined the term gene.

Inheritance:

- Process by which characters are passed on from parents to progeny
- Basis of heredity (transmission of genes from one generation to another)

Variations: Difference in progeny as compared to the parents

Mendel's Hybridisation Experiments

- Gregor Mendel is considered the father of genetics.
- Conducted hybridisation experiments on **garden peas** (*Pisum sativum*) for seven years (1856-1863)
- Laid the foundation of modern genetics
- Applied mathematical logic and statistical analysis to problems in biology
- Explained the phenomenon of inheritance
- Large sampling size gave greater credibility to his data
- Initial no. of pea plant varieties was 34, then 22 but ultimately worked with only **7 pairs** of varieties.

Mendel's Experiments in Pea Plant

Merits

As an experimental model

Experimental organism: Pisum sativum

- Short life span of one year
- Requires less maintenance and labour
- Multiple plants can be grown in small area
- Availability of pure varieties
- Exhibits a variety of visible characters with contrasting traits
- **Self-fertilising**, mating can be controlled easily
- Produces a large number of seeds

Mendel's Experiments

Significance

- Duration of experiments 8 consecutive years
- Number of plants experimented approx.
 28,000 plants
- Data set Minimum three generations for each of the 7 characters
- Obtained interesting results which were explained mathematically and statistically
- Published his work in the "Journal of the Royal Horticultural Society" in 1865
- Factors are discrete units which are passed on from one generation to another

Unappreciation

- Not widely publicized because of poor communication
- Contemporaries believed in blending theory and did not accept his results
- Asked to show the physical existence of "Factors"
- Usage of mathematics to explain biological phenomena unaccepted and misunderstood
- Mendel's conclusion about heredity were ahead of his time
- Failed to reproduce the results on Hakweed (Hieracium). It was due to non-availability of pure lines. 'Pure line' was coined by Johannsen in 1900.

Resurface of Mendel's work

- These three scientists **independently rediscovered** the same concepts as that of **Mendel** in 1900s.
- They were unaware of Mendel's work initially, but later acknowledged Mendel as the pioneer.
- Mendel's work resurfaced and got the appropriate recognition.

Important Terminology

Character - Heritable feature that varies among individuals

Trait - Each variant of a character

Allele - Slightly modified forms of the same gene. The term allele was given by Bateson

Factors - Something stably passed down, unchanged, from parent to offspring through the gametes, over successive generations

Phenotype - Visible physical trait of an organism

Genotype - Actual genetic make-up of an organism

Homozygous- Identical alleles on the homologous chromosomes (Example: TT, tt)

Heterozygous- Dissimilar alleles on the homologous chromosomes (Example: Tt, Rr)

Dominant - Trait which can express itself over contrasting trait

Recessive - Trait which cannot express itself over contrasting trait/ is suppressed by dominant or contrasting trait

Monohybrid Cross

It is a cross between plants differing in **only one character.** Mendel selected plants which undergo self-fertilisation for several generations, such that their traits remain unchanged. They are known as **pure lines/true breeds.**

Monohybrid experiment technique

- Stamen are removed
- 2. Pollens are transferred
- 3. Seeds are sown
- 4. Plants obtained in this generation are called Filial 1 progeny or the F₁

Observation: All the plants of F₁ generation develop yellow coloured seeds

Monohybrid Cross

When yellow seeded pea plant (YY) was crossed with a green seeded pea plant (yy), all the offspring were yellow.

Genotype of F₁ generation

100% of F₁ generation has Yy genotype

Phenotype of F₁ generation

100% of F₁ generation has phenotype yellow

- Law of Dominance When two alleles are different or in heterozygous condition, then one dominates the expression of the other.
- Law of Segregation During gamete formation, pair of alleles segregate such that each gamete receives only one allele from the pair.
- Mendel arrived at these two laws based on the monohybrid cross.

Punnett Square

Reginald C. Punnett gave the simplest way of representing a cross.

Monohybrid Cross F₁

Genotype of F₁ generation

100% of F₁ generation has genotype Yy

Phenotype of F₁ generation

100% of F₁ generation has phenotype yellow

Monohybrid Cross F₂

Genotype of F₂ generation

25% of F_2 generation has genotype YY

50% of F_2 generation has genotype Yy

25% of F_2 generation has genotype yy

Phenotype of F₁ generation

75% of F_2 generation has phenotype yellow 25% of F_2 generation has phenotype green

Mendel's Observations

The F₁ dominating trait also appeared in F₂ generation, whereas the recessive trait which disappeared in F₁, reappeared in F₂ in 1 of the 4 plants.

Traits were not blended in progeny

Mendel's Observations

Recessive trait

Reciprocal Cross

Reciprocal Cross

A paired cross in which traits of male and female parents are switched.

Reciprocal cross yielded same ratio of progeny

 F_1 = all yellow

 F_2 = yellow: green = 3:1

Test Cross

It is a cross performed to determine whether offspring is **homozygous or heterozygous** dominant by crossing with the recessive parent.

Back Cross

Back cross is a cross of an offspring with one of its parent plant Test cross is a type of back cross

100% offspring are yellow

The Concept of Dominance

Mendel's law failed to explain the concepts of **incomplete dominance** and **co-dominance**.

- For example, a gene contains the information for producing an enzyme. Now there are two copies of a gene i.e., two allelic forms.
- The normal allele produces the normal enzyme which is needed for the transformation of a substrate S.

- This allele can change due to some modifications.
- They are mutated allele / modified enzyme / faulty / no transformation.

The Concept of Dominance

- When the modified allele produces a non-functional enzyme or no enzyme, the phenotype may be affected.
- The phenotype/trait will only be dependent on the functioning of the normal allele.
- The unmodified, fully functional allele, which represents the original phenotype is the dominant allele and the modified allele is generally the recessive allele.
- So, the **recessive trait** is seen only when both the alleles present produce **non-functional** enzyme or **no enzyme** at all.

Dominant allele

- Normal
- Unmodified
- Fully functional
- Original phenotype

Recessive allele

- Modified
- Non-functional

The Concept of Dominance

- Now, in cases of co-dominance or incomplete dominance, the new alleles do not produce useless or non-functional enzymes.
- Instead, they produce an **enzyme** that actually has the ability to **give** rise to a new or different trait.
- Hence, when the two different alleles are present together in an individual, one of the two things happens:
 - The physiological process initiated by the different alleles result in a new trait, which can be seen as a blend of the homozygous traits (Incomplete dominance).
 - o The **two alleles are expressed independent of each other** and hence both the alleles are expressed together in the phenotype (codominance).

Exceptions to Mendelian Inheritance

Incomplete Dominance

- Incomplete dominance is a form of **intermediate inheritance** in which one allele for a particular trait is not expressed completely over its paired allele.
- A new phenotype is formed.
- Hence, the **law of segregation** is not followed.

F₂ generation

Co-dominance

- In F₂ generation, both the alleles are heterozygous individual but do not show dominant – recessive relationship or intermediate condition. Rather, they express their traits independently and are known as codominant alleles.
- Law of dominance is not followed.

F₂ generation

Co-dominance in Blood Groups

Based on presence or absence of antigens A and B on RBCs, there are four different blood groups I^A and I^B are **co-dominant**, and hence they create a **new blood group AB** which has both the **antigen A** and **antigen B**.

Multiple Alleles

- More than two alleles of the same gene in a population
- ABO blood group is controlled by I gene and has three alleles IA, IB, i
- ABO blood group shows co-dominance and dominant recessive relationship also

Allele from parent 1	Allele from parent 2	Genotype of offspring	Blood types of offspring	Type of dominance	Human blood groups (ABO)	
I _A	IA	IAIA	A	-	Phenotype	Genotype
<i> </i> A	J B	A B	AB	Co-dominance	0	ii
<i> </i> A	i	l ^A i	А	Dominant - recessive		
/ B	Į A	A B	AB	Co-dominance	Α	I ^A I ^A , I ^A i
 B	 B	IBIB	В	-	В	IBIB, IBi
 B	i	l ^Β i	В	Dominant - recessive	AB	<i>J</i> AJB
i	i	ii	0	-	Ab	1 1-

Dihybrid Cross

- It is a **cross between two individuals with two different observable characters.** E.g., Having two different alleles for each of the two character.
- The parents are round and yellow (homozygous dominant for both traits) and wrinkled green (homozygous recessive for both traits).
- In that case, the F_1 generation will produce yellow and round seeds (heterozygous dominant for both genes). F_1 generation is then self-pollinated.

Dihybrid Cross - F₁ Generation

Parents:

Round, yellow seeds

Wrinkled, green seeds

Gametes:

F₁ generation:

Gametes:

Dihybrid cross - F₂ generation

Phenotypic ratio- 9:3:3:1

Yellow, round - 9

Yellow, wrinkled - 3

Green, round - 3

Green, wrinkled - 1

Law of Independent Assortment

- The phenotypic ratio for the F₂ generation in a dihybrid cross is 9:3:3:1; while the genotypic ratio is 1:2:1:2:4:2:1:2:1.
- The dihybrid cross helped Mendel to deduce the law of independent assortment.
- Law of independent assortment When two pairs of traits are combined in a hybrid, the segregation of one pair of characters is independent of the other pair of characters.
- It implies that **there is no connection** or linkage between the segregation events of the two genes.

Two Genes Interactions

- When two genes of the same allelic pair or genes of two or more different allelic pairs influence one another. Then it is called **two** gene interaction.
- Non-allelic genetic interactions: Interactions between genes located at different loci on the same chromosome or on different but non-homologous chromosomes controlling a single phenotype to produce a different expression
- Some of these interaction are as follows:
 - Complimentary genes
 - Duplicate genes
 - Epistasis

Two Genes Interactions

- Complimentary genes: Two genes present on separate loci that interact together to produce dominant phenotypic character
- **Duplicate genes:** When dominant alleles of two gene loci produce the same phenotype, they provide a 15: 1 ratio, irrespective of whether they are inherited together or separately.
- Epistasis: Gene which masks (hides) the action of another gene (non-allelic) is termed as epistatic gene.
 - The gene whose effects are masked is called **hypostatic gene**.
 - O **Dominant epistasis** one allele of the gene that shows epistasis can mask alleles of the other gene
 - O Recessive epistasis two alleles have to be inherited in order for the phenotype of the second gene to be masked

Shortcut to find number of phenotype, genotype and gametes

- Types of gametes = 2ⁿ
- Types of phenotypes = 2ⁿ
- Types of genotypes = 3ⁿ

only in case of self fertilisation

where n is the number of heterozygous gene pair

Chromosomal Theory of Inheritance

- Scientists Walter Sutton and Theodore Boveri independently performed some experiments
- Observed cell division and discovered that chromosomes are present in pairs, and separate during cell division specifically in meiosis
- Conclusions reinforced Mendel's work which is now known as the chromosomal theory of inheritance
- Genes are found on specific locations of the chromosomes and the behavior of these chromosomes during meiosis can explain Mendel's laws of inheritance
- Factors = Genes

Sutton and Boveri's Experiment-1

- Sutton conducted the experiment on lubber grasshopper, observed that it had 22 chromosomes in each cell
- Every chromosome had an identical pair which are now known as homologous pairs

 Conclusion: Every chromosome had an almost identical partner. So, chromosomes occur in pairs

Sutton and Boveri's Experiment-2

- Boveri worked on Ascaris and found that the organism has 4 chromosomes
- Observation: Two types of cells in ascaris; In the present era we call them as somatic cells and the Germ cells, each divides differently

S phase

Genetic material doubled

Prophase I

Chromosomes are formed

Metaphase I

Homologous pairs of chromosomes align on either side of equatorial plate

Anaphase I

Identical pairs separate and move to opposite poles

Telophase I

Karyokinesis completed which will be followed by cytokinesis

Germ cells

Prophase II

As the cells start to divide chromatin condenses to form chromosomes.

Metaphase II

The chromosomes arrange themselves at the centre.

Anaphase II

Chromosomes separate and travel to opposite poles.

Telophase II and Cytokinesis

By the end of the division he observed 2 chromosomes and 4 cells were formed.

- Conclusion: Meiosis reduces number of chromosomes in germ cells by half
- Chromosomes segregate during gamete formation

- **Sutton** conducted another experiment on the **same lubber grasshopper.** observed that it had **22 chromosomes** in each cell
- For simplicity, consider only 4 chromosomes
- With these 2 sets of homologous chromosomes, there are two possibilities for meiosis
 Possibility I

Possibility II

- On comparing both possibilities, we find:
 - In case I, yellow and red are together
 In case II, yellow and green are together
- Each chromosome separated independent of each other
- When they were separated into gametes, the set of chromosomes in each daughter cell ended up having a mixture of the parental and non- parental traits, but not necessarily the same mixture as that of other daughter cells.
- Hence, it can be concluded that during gamete formation, chromosomes in a homologous pair separate independently of other homologous pairs of chromosomes.

Chromo- somes somatic cell (2n)	Chromo- somes germ cells (n)	Number of possible combinati- ons in germ cell (2 ⁿ)
4	2	2 ² = 4
6	3	8
10	5	32

Linkage and Recombination

Morgan's Experiments: Morgan hybridised yellow-bodied, white-eyed females to brown-bodied, red-eyed males

Observation: Two genes did not segregate independently of each other. F_2 ratio deviated from the 9:3:3:1 ratio.

Linkage and Recombination

- Physical association of genes on the chromosome is called linkage.
- Frequency of recombination between gene pairs on the same chromosome is a measure of the distance between genes
- When genes are grouped on the same chromosome
 - Some genes are very tightly linked (showed very low recombination)
 - Some are loosely linked (showed higher recombination)

F ₂ generation	Body colour and eye colour (cross A)		
Parental type	98.7%		
Recombinant type	1.30%		

Genes tightly linked

Genes loosely linked

F ₂ generation	Wing size and eye colour (cross B)
Parental type	62.8%
Recombinant type	37.2%

Recombination C Linkage

Chromosomal Mapping

- It is the process of determining the position of specific genes on specific chromosomes and constructing a diagram of each chromosome showing the relative positions of the genes.
- Sequence and the relative distances between various genes is graphically represented in terms of recombination frequencies or cross over values (COV). This is known as linkage map of chromosome.
- Distance or cross over units are called centimorgan (cM) or map unit.
- The recombination frequency depends upon the distance between the genes.
- Distance between the genes and the crossing over is directly proportional to each other.
- The **first chromosomal map** or genetic map was made for *Drosophila*.

Polygenic Inheritance

- Characters like height and skin colour are controlled by three or more genes and are called polygenic traits.
- Inheritance of such types of traits is called polygenic inheritance.
 - Phenotype reflects the contribution of each allele, i.e., the effect of each allele
 is additive
 - o Polygenic inheritance also takes into account the influence of environment

Pleiotropism

Skin pigmentations

- Single gene exhibits multiple phenotypic expression
- Example: Effect of a gene on metabolic pathway which contributes to different phenotype in **Phenylketonuria**
- Effected enzyme: Phenylalanine hydroxylase (Enzyme is either missing or severely reduced.)
- Caused due to single gene mutation

 So, the metabolic pathway associated with the enzyme is disrupted and leads to multiple phenotypes

Based on sex chromosomes

- Sex determination is a biological mechanism which determines the development of sexual characteristics in an organism
- First studied by **Henking (1891)** in insects
 - Discovered X chromosome and named it 'X-body'
 - Unable to explain its significance
 - Lead to the development of the chromosomal mechanism of sex determination

Based on sex chromosomes

XX - XO type

50% males

50% females

Eg: Grasshopper

Female → XX

Male → XO

- Male has only one X chromosome, whereas female has two X chromosomes.
- Males produce two different types of gametes.
- Eggs fertilized by sperm having X chromosome develop into females and those fertilized by sperm, without X chromosome develop into males.
- Fertilising sperm determines whether the offspring will be male or female.

Based on sex chromosomes

XX - XY type

50% Males

50% Females

Eg: Humans and Drosophila

Female → XX

Male → XY

Female → XX

Male → XY

- Males have one X and one Y sex chromosomes, whereas females have two X chromosomes.
- Males produce two different types of gametes.
- Eggs fertilized by sperm having **X chromosome** develop into females and those fertilized by sperm, with **Y chromosome** develop into males.
- Fertilising sperm determines whether offspring will be a male or female.

Eg: Birds

Based on sex chromosomes

ZZ - ZW type W 50% males 50% females

Sex chromosomes → Z | W

Female → ZW

Male → ZZ

- Females have one Z and one W chromosome, whereas males have two Z chromosomes.
- Females produce two different types of gametes.
- Sperm fertilising egg having Z **chromosome** develop into males.
- Sperm fertilising egg having W chromosome develop into females.

Based on sex chromosomes

Sex determination - Butterflies and Moths: ZZ-ZO Type

Female → ZO Male → ZZ

 In butterflies, the females have only one sex chromosome, besides the autosomes whereas male has two sex chromosomes.

50% Males 50% Females

Based on the Haplodiploid system

- Based on the number of sets of chromosomes
- Seen in honeybees
- Individuals in a colony of honeybees:
 - Females (Queen and Worker) are diploid → Develop from fertilised eggs.
 - Males (Drone) are haploid > Develop from unfertilised eggs parthenogenetically.

Based on Haplodiploid system

Sex linked inheritance

- X-chromosome does not pass directly from one parent to the offspring of the same sex but follows a criss-cross inheritance.
- A male transmits his traits to his grandson through daughter (Diagynic), while
 a female transmits the traits to her granddaughter through her son (Diandric).

Sex limited traits

- Autosomal genes found in both sexes but express in one sex only
- E.g., : Milk glands in female, beard in man, deep male voice, antlers in male deer, brilliant plumage in peacock, female or male musculature

Sex influenced traits

- Autosomal genes which are influenced by the sex of the bearer
- These traits appear more frequently in one sex than in the other.
- E.g., : Pattern baldness (affected by male sex hormone/testosterone)
- Short index finger in male

Holandric traits

- Y-linked traits, transferred from male to male only
- E.g., : Porcupine skin
- TDF (Testes determining factor)
- Hypertrichosis

Mutation

Mutation is a phenomenon that results in **alteration of DNA sequences** and consequently results in changes in the **genotype** and **phenotype**.

Chromosomal aberrations

Chromosomal aberrations

Deletion

- Portion of chromosome deleted.
- Cri du chat syndrome arises due to deletion.

Duplication

 Part of chromosome duplicated.

Inversion

 Segment of chromosome breaks off and reattaches in the reverse order.

Translocation

 Exchange of chromosomal segments between non-homologous chromosomes.

Reasons for chromosomal aberration

- Chromosomal aberrations occur due to non-disjunction of chromosome.
- This error occurs during the anaphase of the cell division.
- Sometimes, the **chromosomes fail to split** leading to one gamete having more chromosomes and the other gamete having less chromosomes.

Gene Mutation

Gene mutations

Point mutation

- Change in a **single base pair** of DNA
 - Sickle cell anaemia is caused due to point mutation.

Frameshift mutation

 Deletions and insertions of base pairs of DNA.

Mutagens

Mutagens

Physical mutagens

Ionizing radiations

- Includes X rays,
 α rays, β- rays, γ
 rays
- Causes breakage in the chromosomes which may lead to different types of cancers

Non- ionizing radiations

- Includes UV light but does not penetrate the human skin
- Thymidine
 (pyrimidine) dimer
 formation disturbs
 the DNA double
 helix, thus DNA
 replication

Mutagenic to both replicating and nonreplicating DNA

Nitrous acid

Mutagenic to only replicating DNA

Chemical mutagens

- Acridine dyes (causes Thalassemia)
- Base analogues

Genetic Disorders

Mendelian disorders

- Alteration or mutation in a single gene
- Follows Mendelian pattern of inheritance
- Pattern of inheritance can be traced in a family by the pedigree analysis
- May be dominant or recessive
- Examples Haemophilia, Cystic fibrosis,
 Sickle cell anaemia, Colour blindness,
 Phenylketonuria, Thalassemia, etc.

Chromosomal disorders

- Caused due to absence or excess or abnormal arrangement of one or more chromosomes
- Aneuploidy gain or loss of one or few chromosomes
- Polyploidy increase in a whole set of chromosomes
- Failure of cytokinesis after telophase results in polyploidy

Pedigree Analysis

- Analysis of traits in several generations of a family is called the pedigree analysis.
- Inheritance of a particular trait is represented in the family tree over generations.
- In human genetics, it provides a strong tool, helps in tracing the **inheritance** of a **specific trait, abnormality** or **disease.**

Pedigree chart

Pedigree Analysis

Symbols used in pedigree analysis

- A sex-linked recessive genetic disorder in which:
 - there is a defect in either red or green cone of eye
 - person is unable to discriminate between red and green colour.
- Defect is due to mutation in genes present in the X chromosome.
- Males suffer more when compared to females; females are usually carriers.

Colour blindness

- Son of a woman who carries the colour blind gene has a 50 percent chance of being colour blind.
- A daughter will not normally be **colour blind**, unless her mother is a **carrier** and her **father** is **colour blind**.
- Occurs in 8% of males and 0.4% of females.

Haemophilia

- It is a sex-linked recessive disease.
- A single protein that is a part of the cascade of proteins involved in the blood clotting is affected, this is Haemophilia A (more severe)
 - o A simple cut results in non-stop bleeding in affected individuals.
- Heterozygous female (carrier) for haemophilia may transmit the disease to sons.
- The family pedigree of Queen Victoria shows a number of haemophilic descendants as she was a carrier of the disease.
- **Haemophilia B** (Christmas disease) plasma thromboplastin is absent. Inheritance is just like Haemophilia A
- Possibility of a female becoming a haemophilic is extremely rare.
 - Mother of such a female has to be carrier and the father should be haemophilic.

Sickle-cell anaemia

- Inherited red blood cell disorder
- Autosome linked recessive trait
- Transmitted from parents to the offspring when both the parents are carrier (heterozygous) for the gene
- Not enough healthy red blood cells to carry oxygen throughout the body
- Person has abnormal haemoglobin

Sickled red blood cells

- **Mutation** in the **Hb gene** causes abnormal Hb synthesis resulting in the formation of sickle shaped cells
- Change in amino acid sequence is caused due to point mutation
- Glutamic acid in the 6th position of the beta globin chain is replaced by Valine
- Causes change in Hb and thereby in RBCs, from biconcave to sickle shaped

Sickle-cell anaemia

- Heterozygous (Hb^AHb^S) individuals
 - Appear apparently unaffected, but they are carriers of the disease
 - 50 percent probability of transmission of the mutant gene to the progeny
 - Exhibits sickle-cell trait

Thalassemia

- Autosome-linked recessive blood disease
- Blood disorder resulting from inadequate Hb synthesis
- Transmitted when both the partners are unaffected carriers (heterozygous) for the gene defect
- It could be due to either mutation or deletion
 - ο Results in reduced rate of synthesis of one of the globin chains (α or β chains) that make up haemoglobin

Alpha thalassemia

Beta thalassemia

Phenylketonuria

- Autosomal recessive trait
 - Affected individual lacks an enzyme that converts the amino acid phenylalanine into tyrosine

- **Phenylalanine** is accumulated and converted into **phenylpyruvic acid** and other derivatives.
- Accumulation of these in brain results in mental retardation.
- Excreted through **urine** because of its **poor absorption** by kidney

Disorders created by imbalance in chromosome number and chromosomal rearrangement.

Types of chromosomal disorders

Types of chromosomal disorders - I

Types of chromosomal disorders - II

- Trisomy of 21st chromosome
- Occurs in both males and females
- Symptoms: Broad palm, physical, psychomotor mental growth retarded, furrowed tongue, partially open mouth

- 47 + XXY
- Occurs only in male
- Symptoms:
 Gynaecomastia and sterility

Down's syndrome

- Trisomy of 21st chromosome
- Occurs both in females and males
- First described by Langdon Down
- Karyotype: 47, XX, + 21 for females and
 47, XY, + 21 for males

Growth failure

Klinefelter's syndrome

- Occurs only in males
- Extra X chromosome
- Karyotype: 47+XXY

Tall stature

Slightly feminized physique

Tendency to lose chest hair

Female type pubic hair pattern

Frontal baldness absent

Poor beard growth

Breast development (in 30% of cases) (Gynaecomastia)

Small testes

An extra X chromosome results in Klinefelter's syndrome

Turner's syndrome

- Occurs in females
- Loss of one X chromosome
- Karyotype: 45+X

Cytoplasmic Inheritance

- Self-replicating genes (DNA) are present in the cytoplasm (mitochondrial DNA and chloroplast DNA) also, called plasmagenes, together constitute plasmon (like genome).
- Inheritance of characters by plasmagenes is called extranuclear or extrachromosomal inheritance
- Examples:
 - Maternal inheritance: Contribution of female parent is more, as cytoplasm in egg is always much more than the sperm. E.g., coiling of shells in snails
 - Organelle inheritance: DNA is present in mitochondria and chloroplast which controls the inheritance of some characters. E.g., plastid inheritance in Mirabilis jalapa (4 O'clock plant)

Character - Heritable feature that varies among individuals

Trait - Each variant of a character

Allele - Slightly modified forms of the same gene. The term allele was given by Bateson

Factors - Something stably passed down, unchanged, from parent to offspring through the gametes, over successive generations.

Phenotype - Visible physical trait of an organism

Genotype - Actual genetic make-up of an organism

Homozygous- Identical alleles on the homologous chromosomes. (Example: TT, tt)

Heterozygous- Dissimilar alleles on the homologous chromosomes. (Example: Tt, Rr)

Dominant - Trait which can express itself over contrasting trait.

Recessive - Trait which cannot express itself over contrasting trait or suppressed by dominant or contrasting trait.

- Law of Dominance When two alleles are different or in heterozygous condition, then one dominates the expression of the other
- Law of Segregation During gamete formation, pair of alleles
 segregate such that each gamete receives only one allele from the pair
- Mendel arrived at these two laws based on his Monohybrid cross
- Law of independent assortment When two pairs of traits are combined in a hybrid, the segregation of one pair of characters is independent of the other pair of characters
- Hence, there is no connection or linkage between the segregation events of the two genes

Complete dominance

Phenotypic ratio

Red: White 3: 1

Genotypic ratio

RR:RW:WW

1:2:1

Co-dominance

Phenotypic ratio

Red: Roan: White

1: 2:1

Genotypic ratio

RR:RW:WW

1:2:1

Incomplete dominance

Phenotypic ratio

Red: Pink: White

1:2:1

Genotypic ratio

RR:RW:WW

1:2:1

Mendelian disorders

Colour blindness

Haemophilia

Sickle-cell anaemia

Phenylketonuria

Thalassemia

Chromosomal disorders

Down's Syndrome

Klinefelter's Syndrome

Turner's Syndrome