Welcome to

 Q Alakes

 Q Alakes BBYJU's LIVE

 BBYJU's LIVE}

Parabola, Ellipse and Hyperbola

Session 01	04
Definition of Conic	05
Degenerated Conics	06
Non - Degenerated Conics	07
General Equation	08
Standard Equation of Parabola	10
Terminologies	13
Important Terms	14
Standard Parabolas	16
Shifting of Vertex	18
Position of point w.r.t a parabola	31
Session O2	35
Parametric Coordinates	36
Focal Chord	41
Position of a line w.r.t a parabola	52
Equation of Tangent	58
Point Form	58
Parametric Form	64
Slope Form	66

Table of Contents

Session $03 \quad 75$

Properties of Tangents 76
Normal 83
Equation of Normal : Point Form 84
Parametric Form 90
Slope Form 92
Properties of Normal 98
Conormal Points 104

Session 04110
Properties of Conormal Points 111
Chord of Contact 116
Chord bisected at Point 119
Reflection Property of Parabola 124
Ellipse 126
Standard Equation of an Ellipse 128
Terms Associated with an Ellipse 129
Alternate Definition of an Ellipse 147
Vertical Ellipse 151
Axes of Ellipse parallel to 154
Session 05 157
Equation of an Ellipse Referred to 174
Two Perpendicular Lines as Axes:
Position of point w.r.t an Ellipse 176
Auxiliary Circle 180
Eccentric Angle and Parametric 182
Equation
Chord Joining Two Points 185
Line and Ellipse 187
Point Form : Tangent 189
Parametric Form : Tangent 190
Slope Form : Tangent 191
Session 06 201
Director Circle 209
Equation of Normal 215
Pair of Tangents 222
Chord of Contact 223
Geometrical Properties of Ellipse 22762

[^0]
Table of Contents

Session 07 232
Hyperbola : Analytical Interpretation 247
Standard vs Conjugate Hyperbola 252
Equation of Hyperbola Referred to 254
Two Perpendicular Lines as Axes:
Alternate Definition of Hyperbola 258
Rectangular Hyperbola 262
Equation of a Hyperbola referred to 269
two Perpendicular Lines as axes
Session 08 270
Auxiliary Circle of a Hyperbola 274
Parametric Equations 276
Position oi a point 283
A line and a Hyperbola 284
Position of a line 286
Equation of Tangent 290
Director Circle 306

Session 01

Introduction to Conic and
Parabola

It is the locus of a moving point such that ratio of its distance from a fixed point [focus (S)] to a fixed line [directrix (L)] is always constant. The constant ratio is known as eccentricity (e) of the conic.

$$
\frac{S P}{P M}=e
$$

When focus lies on directrix then (Degenerated conics)

When focus doesn't lie on directrix then (Non - Degenerated conics)

For, general 2 degree equation : $a x^{2}+b y^{2}+2 h x y+2 g x+2 f y+c=0$
$\Delta=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}$
Case I. $\Delta=0$ (Degenerated conic)

Case II. $\Delta \neq 0$ (Non-degenerate conic)

S. no	Condition	Nature of conic
1	$h^{2}>a b$	Hyperbola
2	$h=0 \& a=b$	Circle
3	$h^{2}=a b$	Parabola
4	$h^{2}<a b$	Ellipse

K Key Takeaways

Standard Equation of Parabola:

$S(a, 0) \rightarrow$ focus
$l: x+a=0 \rightarrow$ directrix
Let $P(h, k)$ be a point on the parabola. Then, we need to find the locus of $P(h, k)$.

By definition of parabola,
$P S=P M$
$\Rightarrow \sqrt{(h-a)^{2}+(k-0)^{2}}=P N+N M=h+a$
$\Rightarrow(h-a)^{2}+k^{2}=(h+a)^{2}$
$\Rightarrow k^{2}=(h+a)^{2}-(h-a)^{2}$

K Key Takeaways

Standard Equation of Parabola:

$\Rightarrow k^{2}=(h+a)^{2}-(h-a)^{2}$
$\Rightarrow k^{2}=(h+a+h-a)(h+a-h+a)$
$\Rightarrow k^{2}=2 h \times 2 a=4 a h$
\therefore Required equation of parabola is

Terminologies

- Straight line passing through focus and perpendicular to directrix is called axis
- Vertex: A point at which parabola and axis intersect.
- Directrix: $\rightarrow x+a=0$ or $x=-a$
- Foot at Directrix: $F D=(-a, 0)$ point where axis and directrix intersect.
- Focal chord: any chord passing through focus $(a, 0)$
- Double Ordinate: Any chord parallel to Directrix
- Tangent at Vertex: A line passing through vertex and parallel to Directrix
- Vertex $=\frac{F D+F o c u s}{2}$

Directrix : $x=-a$

- Latus Rectum: LR = Focal chord perpendicular to Axis
L.R. : $x=a$

Here P, Q are end points of L.R.
$\therefore P \equiv(a, 2 a) \& Q \equiv(a,-2 a), P Q=4 a$

Remark: Double ordinate passing through the focus is a latus rectum

Important terms

Focal Distance :

Distance between any point on the curve and the focus

Let $A(x, y)$ be a point on the parabola $y^{2}=4 a x$
$\Rightarrow A S=$ focal distance $=A T=x+a$

(i) Standard parabolas:

Standard parabola recap

Equation	$y^{2}=4 a x$	$y^{2}=-4 a x$	$x^{2}=4 a y$	$x^{2}=-4 a y$
Vertex	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$
Focus	$(a, 0)$	$(-a, 0)$	$(0, a)$	$(0,-a)$
Directrix	$x=-a$	$x=a$	$y=-a$	$y=a$
Axis	X-axis	X-axis	Y-axis	Y-axis
Length of L.R	$4 a$	$4 a$	$4 a$	$4 a$
Focal distance	$x+a$	$-x+a$	$y+a$	$-y+a$
Tangent at vertex	$x=0$	$x=0$	$y=0$	$y=0$

K Key Takeaways

SHIFTING OF VERTEX:

Consider rightward opening parabola having Vertex is at (h, k) \& axis of symmetry parallel to X - axis Consider the new $X^{\prime} Y^{\prime}$ coordinate plane w.r.t the shifted origin $O^{\prime}(h, k)$

Equation of parabola w.r.t the new coordinate system $X^{\prime} Y^{\prime}$ is :

$$
\begin{aligned}
& \text { We know, } \\
& \text { Under shifting of origin } \\
& Y^{\prime}=y-k \\
& X^{\prime}=x-h
\end{aligned}
$$

Required eqn. of the shifted parabola
$\operatorname{FOR}(y-k)^{2}=4 A(x-h):$
$\left(Y^{\prime}\right)^{2}=4 A X^{\prime}$
Vertex: $\left(x^{\prime}, y^{\prime}\right)=(h, k)$
Focus $=(A+h, k)$
Directrix: $x=h-A$
Axis of symmetry: $y=k$

Axis of a parabola along x-axis. If its vertex and focus are at distances 2 and 4 respectively from the origin, on the positive x-axis then which of the following points does not lie on it?

$$
(4,-4)
$$

$(6,4 \sqrt{2})$
$(8,6)$

Axis of a parabola along x-axis. If its vertex and focus are at distances 2 and 4 respectively from the origin, on the positive x-axis then which of the following points does not lie on it?

Given:
Vertex is $(2,0)$
JEE MAIN JAN 2019

All the options satisfy equation (1) except option (D).
$\therefore(8,6)$ does not lie on the given parabola.
Hence, option (D) is the correct answer.

Axis of a parabola along x-axis. If its vertex and focus are at distances 2 and 4 respectively from the origin, on the positive x-axis then which of the following points does not lie on it?

$$
(4,-4)
$$

$$
(6,4 \sqrt{2})
$$

$(8,6)$
(i) SHIFTING OF VERTEX:

(i) SHIFTING OF VERTEX:

$$
(y-k)^{2}=-4 A(x-h)
$$

LEFTWARD OPENING
(i) SHIFTING OF VERTEX:

(i) SHIFTING OF VERTEX:

NOTE:

- On shifting the parabola, coordinates \& equations changes but distances do not change.

- The equation $y=B x^{2}+C x+D$ or $(x-h)^{2}=4 A(y-k)$ represents a vertical parabola.
- The equation $x=B y^{2}+C y+D$ or $(y-k)^{2}=4 A(x-h)$ represents a horizontal parabola.

If $y^{2}+2 y-x+5=0$ represents a parabola. Find its vertex, axis of symmetry, focus, equation of directrix, equation of latus rectum, length of latus rectum \& extremities of latus rectum.

We have, $y^{2}+2 y-x+5=0$ (Parabola)
$\Rightarrow y^{2}+2 y+(1)^{2}-(1)^{2}-x+5=0$
$\Rightarrow(y+1)^{2}=x-4$
$\Rightarrow(y+1)^{2}=1(x-4)$

Rightward opening parabola with axis parallel to X - axis \& vertex $\equiv(4,-1)$

Comparing with $(y-k)^{2}=4 A(x-h)$
Thus the transformed equation of the parabola is:
$(y-(-1))^{2}=1(x-4)$

If $y^{2}+2 y-x+5=0$ represents a parabola. Find its vertex, axis of symmetry, focus, equation of directrix, equation of latus rectum, length of latus rectum \& extremities of latus rectum.
i.e., $\left(y^{\prime}\right)^{2}=4 A\left(x^{\prime}\right) ; y^{\prime}=y+1, x^{\prime}=x-4$
$4 A=1 \Rightarrow A=\frac{1}{4}$

Axis of symmetry:

Equation : $y^{\prime}=0$
i.e., $y+1=0 \Rightarrow y=-1$

Focus:

Coordinates: $(A, 0)$
$\Rightarrow x^{\prime}=A \& y^{\prime}=0$
$\Rightarrow x-4=A \quad \& y+1=0$
$\Rightarrow x=A+4$ \& $y=-1$
$\Rightarrow x=\frac{1}{4}+4$ \& $y=-1$ i.e., $\left(\frac{17}{4},-1\right)$

If $y^{2}+2 y-x+5=0$ represents a parabola. Find its vertex, axis of symmetry, focus, equation of directrix, equation of latus rectum, length of latus rectum \& extremities of latus rectum.

Directrix

Equation : $x^{\prime}=-A$
$\Rightarrow x-4=-\frac{1}{4}$
$\Rightarrow x=\frac{15}{4}$

Latus Rectum:

$=4 A$
$=4 \times \frac{1}{4}$
= 1 unit

Extremities of L.R.

Coordinates: $(A, \pm 2 A)$
i.e., $X^{\prime}=A$ \& $Y^{\prime}= \pm 2 A$
i.e., $x-4=\frac{1}{4} \& y+1= \pm \frac{1}{2}$
i.e. $x=\frac{17}{4} \& y=-\frac{1}{2},-\frac{3}{2}$ i.e. $\left(\frac{17}{4},-\frac{1}{2}\right) \&\left(\frac{17}{4},-\frac{3}{2}\right)$

Equation of L.R : $A B \Rightarrow x=\frac{17}{4}$

Position of a point w.r.t. Parabola:

Consider the parabola $y^{2}=4 x \cdot P(1,3) \& Q(1,1)$ are two points lying in the $X Y$ - plane. Then,

$P \& Q$ are exterior points.

P is interior \& Q is exterior point.
$P \& Q$ are interior points.

P is exterior $\& Q$ is an interior point.

Consider the parabola $y^{2}=4 x . P(1,3) \& Q(1,1)$ are two points lying in the $X Y$ - plane. Then,

Given : $y^{2}=4 x$
$S \equiv y^{2}-4 x$
I. For $P(1,3)$
$S_{P(1,3)}=3^{2}-4(1)=5>0$
$\Rightarrow P(1,3)$ lies outside the parabola.
II. For $Q(1,1)$
$S_{Q(1,1)}=1^{2}-4(1)=-3<0$
$\Rightarrow Q(1,1)$ lies inside the parabola.

Consider the parabola $y^{2}=4 x . P(1,3) \& Q(1,1)$ are two points lying in the $X Y$ - plane. Then,

$P \& Q$ are exterior points.

P is interior \& Q is exterior point.
$P \& Q$ are interior points.

D P is exterior $\& Q$ is an interior point.

Session 02

Parametric Form and

Tangent to Parabola

Let P be any point on the parabola $y^{2}=4 a x$.
Then, $P \equiv\left(a t^{2}, 2 a t\right) ; t \in \mathbb{R}$
\because For all real values of t,
$x=a t^{2} \quad \& \quad y=2 a t$
satisfy the equation of the parabola $y^{2}=4 a x$

NOTE :

When we add h and k to x and y respectively we get translated parabola.
The parametric equations of the parabola $(y-k)^{2}=4 a(x-h)$ are $x=h+a t^{2} \& y=k+2 a t$.

The locus of a point which divides the line segment joining the point $(0,-1)$ and a point on the parabola, $x^{2}=4 y$, internally in the ratio $1: 2$, is:

The locus of a point which divides the line segment joining the point ($0,-1$) and a point on the parabola, $x^{2}=4 y$, internally in the ratio $1: 2$, is:

Let point P be $\left(2 t, t^{2}\right)$ and Q be (h, k).
By section formula,
$h=\frac{2 t}{3}, k=\frac{-2+t^{2}}{3}$
Now, eliminating t from the above equations, we get
$3 k+2=\left(\frac{3 h}{2}\right)^{2}$
Replacing h and k by x and y respectively, we get the
Locus of the curve as: $9 x^{2}-12 y=8$.
Hence, The correct option is (A).

The locus of a point which divides the line segment joining the point ($0,-1$) and a point on the parabola, $x^{2}=4 y$, internally in the ratio 1: 2 , is:

A $9 x^{2}-12 y=8$

$$
4 x^{2}-3 y=2
$$

$$
x^{2}-3 y=2
$$

Key Takeaways

Focal Chord: Any chord passing through the focus of the parabola.

Properties of Focal Chord:

I. If $P\left(t_{1}\right) \& Q\left(t_{2}\right)$ are the ends point of a focal chord then $t_{1} t_{2}=-1$

Proof:
$P\left(t_{1}\right) \equiv\left(a t_{1}^{2}, 2 a t_{1}\right) \& Q_{2}\left(a t_{2}^{2}, 2 a t_{2}\right)$
Equation of $P Q$ using Two Point form is :
$y-2 a t_{1}=\frac{2 a t_{2}-2 a t_{1}}{a t_{2}^{2}-a t_{1}^{2}}\left(x-a t_{1}^{2}\right)$

Key Takeaways

$\Rightarrow y-2 a t_{1}=\frac{2}{t_{2}+t_{1}}\left(x-a t_{1}^{2}\right) \ldots$
Slope of $P Q$
$P Q$ is the focal chord
$\Rightarrow S(a, 0) \rightarrow$ focus satisfies equation (i)
$\Rightarrow 0-2 a t_{1}=\frac{2}{t_{2}+t_{1}}\left(a-a t_{1}^{2}\right)$

$\Rightarrow-2 a t_{1}^{2}-2 a t_{1} t_{2}=2 a-2 a t_{1}^{2}$
$\Rightarrow-2 a t_{1} t_{2}=2 a$
$\Rightarrow t_{1} t_{2}=-1$

Properties of Focal Chord:

II. Length of the focal chord which makes an angle α with the positive direction of $X-$ axis is
$\Rightarrow 4 a \operatorname{cosec}^{2} \alpha$

NOTE :

Smallest focal chord is the one perpendicular to the axis of symmetry i.e. Latus Rectum .
$\Rightarrow \alpha=90^{\circ}$
\therefore Its length $=4 a \operatorname{cosec}^{2}\left(90^{\circ}\right)=4 a$
= Length of Latus Rectum
$=$ Minimum length of a focal chord

Properties of Focal Chord:

III. Semi latus rectum is the harmonic mean of $S P$ and
$S Q$ where P and Q are extremities of the focal chord
$\Rightarrow|P S|, 2 a,|Q S|$ are in HP

$$
2 a=2 \cdot \frac{|P S| \times|Q S|}{|P S|+|Q S|} \quad\binom{a, b, c \text { are in HP }}{\text { if } b=\frac{2 a c}{a+c}}
$$

 end of the chord is (α, β), then $\frac{\alpha+\beta}{8}=$

If $(2,-8)$ is at an end of a focal chord of the parabola $y^{2}=32 x$ and the other end of the chord is (α, β), then $\frac{\alpha+\beta}{8}=$ \qquad -.

Given : $y^{2}=32 x$
$P(t) \equiv\left(a t^{2}, 2 a t\right)$
Here, $a=8$
Coordinates of P are $\left(8 t^{2}, 16 t\right)$
Given Coordinates of P are $(2,-8)$
On comparing, we get : $16 t=-8$
$\Rightarrow t=-\frac{1}{2}$

Parameter of P is $t=-\frac{1}{2}$
\Rightarrow Parameter of Q will be, $-\frac{1}{t}=2$ end of the chord is (α, β), then $\frac{\alpha+\beta}{8}=$ \qquad -.
$\left(t_{1} t_{2}=-1\right)$
$Q\left(-\frac{1}{\mathrm{t}}\right) \equiv\left(\frac{a}{t^{2}},-\frac{2 a}{t}\right)$
$Q\left(-\frac{1}{\mathrm{t}}\right) \equiv(32,32)$
Coordinates of $Q=(\alpha, \beta)$
Comparing:
$(\alpha, \beta)=(32,32)$

$\alpha=32$ and $\beta=32$
$\frac{\alpha+\beta}{8}=\frac{32+32}{8}=\frac{64}{8}=8$

If $(2,-8)$ is at an end of a focal chord of the parabola $y^{2}=32 x$ and the other end of the chord is (α, β), then $\frac{\alpha+\beta}{8}=$

If $A B$ is the focal chord of $x^{2}-2 x+y-2=0$ whose focus is S and $|A S|=l$, then $|B S|=$?

We have, $x^{2}-2 x+y-2=0$
Firstly, we will transform the given equation to a perfect square in x
$\Rightarrow x^{2}-2 x+(1)^{2}-(1)^{2}+y-2=0$
$\Rightarrow(x-1)^{2}=-(y-3)$
Thus, The transformed equation of the parabola is :

$(x-1)^{2}=-(y-3)$
$\Rightarrow\left(x^{\prime}\right)^{2}=-4 A\left(y^{\prime}\right) ; x^{\prime}=x-1 ; y^{\prime}=y-3$
$4 A=1 \Rightarrow A=\frac{1}{4}$

If $A B$ is the focal chord of $x^{2}-2 x+y-2=0$ whose focus is S and $|A S|=l$, then $|B S|=$?

Length of Latus Rectum $=4 A=4 \times \frac{1}{4}=1$ units
Length of Semi Latus Rectum $=\frac{1}{2}$ units
$|A S|, \frac{1}{2},|B S|$ are in HP
$\Rightarrow \frac{1}{2}=2 \cdot \frac{l \times l^{\prime}}{l+l^{\prime}}$
$\Rightarrow l+l^{\prime}=4 l \cdot l^{\prime}$

$\Rightarrow l=4 l \cdot l^{\prime}-l^{\prime}$
$\Rightarrow l=l^{\prime} \cdot(4 l-1) \Rightarrow l^{\prime}=\frac{l}{4 l-1}$
$\Rightarrow|B S|=\frac{l}{4 l-1}$

Key Takeaways

Position of a Line w.r.t. a Parabola:
Parabola : $y^{2}=4 a x$ Line : $y=m x+c$

Solve simultaneously to get points of intersection

$$
\begin{aligned}
& (m x+c)^{2}=4 a x \\
& \Rightarrow m^{2} x^{2}+c^{2}+2 m c x=4 a x \\
& \Rightarrow\left(m^{2}\right) x^{2}+(2 m c-4 a) x+c^{2}=0
\end{aligned}
$$

The above equation we get is quadratic in x

Key Takeaways

Position of a Line w.r.t. a Parabola:

$$
\left(m^{2}\right) x^{2}+(2 m c-4 a) x+c^{2}=0
$$

We have three cases:

$$
D>0
$$

Two real \& distinct roots Intersecting line

$$
D=0
$$

Real \& repeated roots Tangent line

$$
D<0
$$

Imaginary roots Non-intersecting line

$$
\begin{aligned}
& \Rightarrow\left(m^{2}\right) x^{2}+(2 m c-4 a) x+c^{2}=0 \\
& \qquad \begin{aligned}
D & =(2 m c-4 a)^{2}-4\left(m^{2}\right)\left(c^{2}\right) \\
& =4 m^{2} c^{2}+16 a^{2}-16 a m c-4 m^{2} c^{2} \\
& =16 a(a-m c) \\
\Rightarrow D & =16 a(a-m c)
\end{aligned}
\end{aligned}
$$

Case I: CONDITION FOR INTERSECTING LINE
\Rightarrow Two points of intersection
\Rightarrow Two real and distinct roots
$\Rightarrow D>0$
$\Rightarrow 16 a(a-m c)>0$

If $a>0, \Rightarrow a-m c>0$

$$
\Rightarrow a>m c
$$

Position of a Line w.r.t. a Parabola:
Case II: CONDITION FOR TANGENT LINE
\Rightarrow One points of intersection
\Rightarrow One distinct root
\Rightarrow Two real and repeated roots
$\Rightarrow D=0$
$\Rightarrow 16 a(a-m c)=0$

$\Rightarrow a-m c=0$
$\Rightarrow a=m c$
Note: In $y=m x+c$, on replacing c with $\frac{a}{m}$, the line
becomes tangent to the parabola $y^{2}=4 a x$

Position of a Line W.r.t. a Parabola:
Case III: CONDITION FOR
NON-INTERSECTING LINE
\Rightarrow No points of intersection
\Rightarrow No real root
\Rightarrow Two imaginary roots

$\Rightarrow D<0$
$\Rightarrow 16 a(a-m c)<0$
If $\mathrm{a}>0, \Rightarrow a-m c<0$
$\Rightarrow a<m c$

Key Takeaways

Equation of Tangent:

An equation of Tangent divides into three forms:
POINT FORM

PARAMETRIC FORM

SLOPE FORM

Point Form:

The equation of tangent to the parabola $y^{2}=4 a x$ at $P\left(x_{1}, y_{1}\right)$ is $y y_{1}=2 a\left(x+x_{1}\right)$.

Key Takeaways

Equation of Tangent:
Proof:
For $y^{2}=4 a x$
Equation of tangent at $P\left(x_{1}, y_{1}\right)$ becomes $y y_{1}=4 a\left(\frac{x+x_{1}}{2}\right)$

Differentiating $y^{2}=4 a x$ w.r.t x
$\Rightarrow 2 y \frac{d y}{d x}=4 a$
$\Rightarrow \frac{d y}{d x}=\frac{2 a}{y}$
Equation of tangent at $P\left(x_{1}, y_{1}\right)$

Key Takeaways

Equation of Tangent:
Proof:
$\Rightarrow y-y_{1}=\frac{2 a}{y_{1}}\left(x-x_{1}\right)$
$\Rightarrow y y_{1}-2 a x=y_{1}^{2}-2 a x_{1}$
$\Rightarrow y y_{1}-2 a x-2 a x_{1}=y_{1}^{2}-2 a x_{1}-2 a x_{1}$

$\Rightarrow y y_{1}-2 a\left(x+x_{1}\right)=y_{1}^{2}-4 a x_{1}$

$$
=0
$$

$\Rightarrow y y_{1}=2 a\left(x+x_{1}\right)$

Key Takeaways

Equation of Tangent:
Note:
The equation of tangent is given by $T=0$
where T expression is obtained by using the transformations:

Key Takeaways

Equation of Tangent:
Note:
For $y^{2}=4 a x$
Equation of tangent at $P\left(x_{1}, y_{1}\right)$ becomes

Key Takeaways

Equation of Tangent:

Equation of Parabola

Tangent at $\left(x_{1}, y_{1}\right)$

$$
y y_{1}=2 a\left(x+x_{1}\right)
$$

$$
y^{2}=-4 a x
$$

$$
y y_{1}=-2 a\left(x+x_{1}\right)
$$

$$
x^{2}=4 a y
$$

$$
x x_{1}=2 a\left(y+y_{1}\right)
$$

$$
x^{2}=-4 a y
$$

$$
x x_{1}=-2 a\left(y+y_{1}\right)
$$

The equation of tangent to the parabola
$y^{2}=4 a x$ at $P(t) \equiv P\left(a t^{2}, 2 a t\right)$ is $t y=x+a t^{2}$

The equations of tangent of all standard parabolas at t :

The equations of tangent of all standard parabolas in slope form:
Equation of
Equation of
Parabola
Parabola
$y^{2}=4 a x$
$y^{2}=-4 a x$
$x^{2}=4 a y$
$x^{2}=-4 a y$
$\left(-2 a m,-a m^{2}\right)$
$y=m x+a m^{2}$

2 A tangent is drawn to the parabola $y^{2}=6 x$ which is perpendicular to the line $2 x+y=1$. Which of the following points does NOT lie on it ?

A tangent is drawn to the parabola $y^{2}=6 x$ which is perpendicular to the line $2 x+y=1$. Which of the following points does NOT lie on it?

For $y^{2}=6 x, a=\frac{3}{2}$
Equation of tangent: $y=m x+c$
$\Rightarrow y=m x+\frac{3}{2 m}$
$\because c=\frac{a}{m}$
And $\because m=\frac{1}{2}$
(Perpendicular to the line $2 x+y=1$)
Tangent is: $y=\frac{x}{2}+\frac{3}{1} \Rightarrow x-2 y+6=0$
$(5,4)$ does not lie on the line $x-2 y+6=0$

A tangent is drawn to the parabola $y^{2}=6 x$ which is perpendicular to the line $2 x+y=1$. Which of the following points does NOT lie on it ?

Let a line $y=m x(m>0)$ intersect the parabola, $y^{2}=x$ at a point P , other than the origin. Let the tangent to it at P meet the x - axis at the point Q. If area $(\triangle O P Q)=4$ sq. units, then $2 m$ is equal to

Given parabola $y^{2}=x$
JEE Main 2020
Let the coordinates of P be $\left(\frac{t^{2}}{4}, \frac{t}{2}\right)$
Slope of $\mathrm{OP}=m \Rightarrow \frac{2}{t}=m \ldots$. i)
Equation of tangent at P is:
$y t=x+\frac{t^{2}}{4}$
Now the coordinates of $Q \equiv\left(-\frac{t^{2}}{4}, 0\right)$
Area of $\triangle O P Q=\frac{1}{2} \times$ base \times Height $=\frac{1}{2} \times O Q \times$ Altitude from P

$$
4=\frac{1}{2} \times \frac{t^{2}}{4} \times \frac{t}{2}
$$

$\Rightarrow t=4$
$\therefore B y(i), m=\frac{1}{2} \Rightarrow 2 m=1$

Let C be the locus of the mirror image of a point on the parabola $y^{2}=4 x$ with respect to the line $y=x$. Then the equation of tangent to C at $P(2,1)$ is :

$$
2 x+y=5
$$

$$
x+2 y=4
$$

$$
x+3 y=5
$$

$$
x-y=1
$$

Let C be the locus of the mirror image of a point on the parabola $y^{2}=4 x$ with respect to the line $y=x$. Then the equation of tangent to C at $P(2,1)$ is :

Image of $y^{2}=4 x$, about $y=x$ is $x^{2}=4 y$
Equation of tangent at $P(2,1)$ is :
$2 x=2(y+1) \Rightarrow x-y=1$

Let C be the locus of the mirror image of a point on the parabola $y^{2}=4 x$ with respect to the line $y=x$. Then the equation of tangent to C at $P(2,1)$ is :

$$
2 x+y=5
$$

B

$$
x+2 y=4
$$

$$
x+3 y=5
$$

D

$$
x-y=1
$$

Session 03

Equation of Normal in

Different Forms

In each of the equations of tangent for the standard parabolas, replace $x \rightarrow(x-h)$ and $y \rightarrow(y-k)$ to get the equation of tangent for the respective translated parabolas.

Properties of Tangents:
I. Tangents at $P\left(t_{1}\right)$ and $Q\left(t_{2}\right)$ intersect at $R \equiv\left(a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right)$.

II. The portion of tangent between the point of contact $(P(t))$ and the point where it meets the directrix $(Q(t))$ subtends right angle at focus.

III. Tangent drawn at the extremities of focal chord are perpendicular and intersect on the directrix.

Note:

Each point on the directrix will give perpendicular tangents.

So, Equation of Director Circle to the parabola $y^{2}=4 a x$ is

$$
x=-a
$$

$I V$. The foot of the perpendicular drawn from focus upon any tangent lies on the tangent at vertex. Hence, circle described on any focal radii as diameter touches the tangent at vertex.

V . The area of the triangle formed by three points on the parabola is twice the area of the triangle formed by the tangents at these points.

$$
\text { Ar } \triangle P Q R=2 A r \triangle A B C
$$ P on the tangent such that the other tangent from it is perpendicular to it.

$y^{2}=8 x \quad \Rightarrow a=2$
Tangent drawn at the extremities of focal chord are perpendicular and intersect on the directrix.
P lies on the directrix $x=-a=-2$
$\therefore P \equiv(-2,0)$

Key Takeaways

Normal:

The line perpendicular to the tangent at the point of contact is called the Normal to the parabola at that point.

O Key Takeaways

Equations of Normal : Point Form

The equation of normal to the parabola

$$
y^{2}=4 a x \text { at } P\left(x_{1}, y_{1}\right) \text { is } y-y_{1}=-\frac{y_{1}}{2 a}\left(x-x_{1}\right)
$$

Proof:
We have, $y^{2}=4 a x$
Equation of tangent at $P\left(x_{1}, y_{1}\right)$ is $T=0$.

$\Rightarrow y y_{1}=2 a\left(x+x_{1}\right)$
$\Rightarrow m_{\text {tangent }}=\frac{2 a}{y_{1}}=$ Slope of tangent at P
\Rightarrow Slope of Normal $=-\frac{y_{1}}{2 a}(\because$ Tangent \perp Normal $)$

0
 Key Takeaways

Equations of Normal : Point Form
\Rightarrow Slope of Normal $=-\frac{y_{1}}{2 a}$
$(\because$ Tangent \perp Normal $)$
\therefore By POINT SLOPE FORM,
Equation of normal is : $y-y_{1}=-\frac{y_{1}}{2 a}\left(x-x_{1}\right)$

O Key Takeaways

Equations of Normal : Point Form
Equation of normals of standard parabolas at $\left(x_{1}, y_{1}\right)$:

S. No.	Equation	Normal at $\left(x_{1}, y_{1}\right)$
1	$y^{2}=4 a x$	$y-y_{1}=-\frac{y_{1}}{2 a}\left(x-x_{1}\right)$
2	$y^{2}=-4 a x$	$y-y_{1}=\frac{y_{1}}{2 a}\left(x-x_{1}\right)$
3	$x^{2}=4 a y$	$y-y_{1}=-\frac{2 a}{x_{1}}\left(x-x_{1}\right)$
4	$x^{2}=-4 a y$	$y-y_{1}=\frac{2 a}{x_{1}}\left(x-x_{1}\right)$

$?$
Let the tangent to the parabola $S: y^{2}=2 x$ at the point $P(2,2)$ meet the x-axis at Q and normal at it meet the parabola S at the point R. Then the area (in sq. units) of the triangle $P Q R$ is equal to

Let the tangent to the parabola $S: y^{2}=2 x$ at the point $P(2,2)$ meet the x-axis at Q and normal at it meet the parabola S at the point R. Then the area (in sq. units) of the triangle $P Q R$ is equal to

JEE Main JULY 2021
Solution:
Tangent to $y^{2}=2 x$ at $P(2,2)$ is $T=0$
$\Rightarrow 2 y=x+2$
$\therefore Q(-2,0)$
Normal at $P(2,2)$ is $y+2 x=6$
meets the curve at $R\left(\frac{9}{2},-3\right)$
$\Delta P Q R=\left\lvert\, \begin{array}{ccc}\frac{1}{2} & \begin{array}{ccc}2 & 2 & 1 \\ -2 & 0 & 1 \\ \frac{9}{2} & -3 & 1\end{array}| | ~\end{array}\right.$
Area of $\triangle P Q R=\frac{25}{2}$ sq. units

Let the tangent to the parabola $S: y^{2}=2 x$ at the point $P(2,2)$ meet the x-axis at Q and normal at it meet the parabola S at the point R. Then the area (in sq. units) of the triangle $P Q R$ is equal to

O Key Takeaways

Equations of Normal : Parametric Form
The equation of normal to the parabola $y^{2}=4 a x$ at $P(t) \equiv P\left(a t^{2}, 2 a t\right)$
is given by $y=-t x+2 a t+a t^{3}$.

Proof:

Here, $\left(x_{1}, y_{1}\right) \equiv\left(a t^{2}, 2 a t\right)$
Equation of $\mathrm{N}: y-y_{1}=-\frac{y_{1}}{2 a}\left(x-x_{1}\right) \quad$ (POINT FORM)

$\Rightarrow y-2 a t=\frac{-2 a t}{2 a}\left(x-a t^{2}\right)$
$\Rightarrow y=-t x+2 a t+a t^{3}$

K Key Takeaways

Equations of Normal : Parametric Form
Equation of normals of standard parabolas at t :

S. No.	Equation	Parametric Co-ordinates	Normal at t
1	$y^{2}=4 a x$	$\left(a t^{2}, 2 a t\right)$	$y+t x=2 a t+a t^{3}$
2	$y^{2}=-4 a x$	$\left(-a t^{2}, 2 a t\right)$	$y-t x=2 a t+a t^{3}$
3	$x^{2}=4 a y$	$\left(2 a t, a t^{2}\right)$	$x+t y=2 a t+a t^{3}$
4	$x^{2}=-4 a y$	$\left(2 a t,-a t^{2}\right)$	$x-t y=2 a t+a t^{3}$

Equation of parabola	Point of contact	Equation of Normal
$y^{2}=4 a x$	$\left(a m^{2},-2 a m\right)$	$y=m x-2 a m-a m^{3}$
$y^{2}=-4 a x$	$\left(-a m^{2}, 2 a m\right)$	$y=m x+2 a m+a m^{3}$
$x^{2}=4 a y$	$\left(-\frac{2 a}{m}, \frac{a}{m^{2}}\right)$	$y=m x+2 a+\frac{a}{m^{2}}$
$x^{2}=-4 a y$	$\left(\frac{2 a}{m},-\frac{a}{m^{2}}\right)$	$y=m x-2 a-\frac{a}{m^{2}}$

If the parabolas $y^{2}=4 b(x-c)$ and $y^{2}=8 a x$ have a common normal, then which one of following is a valid choice for the ordered triplets (a, b, c) ?

If the parabolas $y^{2}=4 b(x-c)$ and $y^{2}=8 a x$ have a common normal, then which one of following is a valid choice for the ordered triplets (a, b, c) ?

If m is the slope of the common normal, then the equation of normal to parabola $y^{2}=4 b(x-c)$ is given by

$$
y=m(x-c)-2 b m-b m^{3} \cdots(1)
$$

Equation of normal to parabola $y^{2}=8 a x$ is

$$
\begin{equation*}
y=m x-4 a m-2 a m^{3} \tag{2}
\end{equation*}
$$

From equation (1) and (2), we get

$$
\begin{align*}
& m(x-c)-2 b m-b m^{3}=m x-4 a m-2 a m^{3} \\
& \Rightarrow m^{2}(2 a-b)=c-2(2 a-b) \tag{1,1,0}\\
& \Rightarrow m^{2}=\frac{c}{2 a-b}-2 \\
& \because m^{2} \geq 0 \Rightarrow \frac{c}{2 a-b}-2 \geq 0 \\
& \therefore \frac{c}{2 a-b} \geq 2 \quad \cdots(3)
\end{align*}
$$

Hence $(1,1,3)$ satisfies equation (3)

If the parabolas $y^{2}=4 b(x-c)$ and $y^{2}=8 a x$ have a common normal, then which one of following is a valid choice for the ordered triplets (a, b, c) ?

$$
\left(\frac{1}{2}, 2,0\right)
$$

$(1,1,3)$

$(1,1,0)$

$$
\left(\frac{1}{2}, 2,3\right)
$$

Given: Curve $y^{2}=4 x$ and $x^{2}+y^{2}-12 x+31=0$
Shortest distance between curves occur along common normal.

Equation of normal to $y^{2}=4 x: t x+y=2 t+t^{3}$
\therefore It should pass through centre of circle $(6,0)$
$\Rightarrow 6 t+0=2 t+t^{3}$
$\Rightarrow t^{3}-4 t=0$

$$
t=-2(B)
$$

$\Rightarrow t(t-2)(t+2)=0$
$A=\left(t^{2}, 2 t\right)=(4,4) \& B=\left(t^{2}, 2 t\right)=(4,-4)$
$A P=$ distance between $(4,4) \&(6,0)=\sqrt{20}$
$C C^{\prime}=d_{3}=6-\sqrt{5}$
\Rightarrow Shortest distance $=A P-\sqrt{5}$

$$
=\sqrt{20}-\sqrt{5}
$$

\therefore Shortest distance $=\sqrt{20}-\sqrt{5}$

I. Normal other than axis of parabola never passes through the focus.

II. Normal at $P\left(t_{1}\right)$ meets the curve again at $Q\left(t_{2}\right)$, then

$$
t_{2}=-t_{1}-\frac{2}{t_{1}}
$$

III. The point of intersection of normals at $P\left(t_{1}\right)$ and

$$
Q\left(t_{2}\right) \text { is }\left(2 a+a\left(t_{1}^{2}+t_{1} t_{2}+t_{2}^{2}\right),-a t_{1} t_{2}\left(t_{1}+t_{2}\right)\right)
$$

IV. If the normals to the parabola $y^{2}=4 a x$ at points $P\left(t_{1}\right)$ and $Q\left(t_{2}\right)$ intersect again on the parabola at the point $R\left(t_{3}\right)$ then, $t_{1} t_{2}=2$ and $t_{1}+t_{2}+t_{3}=0$.

A is a point on the parabola $y^{2}=4 a x$. The normal at A cuts the parabola again at B. If $A B$ subtends a right angle at the vertex of the parabola, then find the slope of Normal.

Given: $y^{2}=4 a x$
Slope of normal $N=m=-\mathrm{t}_{1}$
$m_{O A} \times m_{O B}=-1$
$\Rightarrow\left(\frac{2 a t_{1}-0}{a t_{1}^{2}-0}\right) \times\left(\frac{2 a t_{2}-0}{a t_{2}^{2}-0}\right)=-1$
$\Rightarrow \frac{4 a^{2} t_{1} t_{2}}{a^{2} t_{1}^{2} t_{2}^{2}}=-1$
$\Rightarrow t_{1} t_{2}=-4 \cdots(i)$
Using property II: $t_{2}=-t_{1}-\frac{2}{t_{1}} \cdots$ (ii)
Solving (i) and (ii):
$t_{2}=-4 / t_{1}$
A is a point on the parabola $y^{2}=4 a x$. The normal at A cuts the parabola again at B. If $A B$ subtends a right angle at the vertex of the parabola, then find the slope of Normal.

$$
\begin{aligned}
& \therefore-\frac{4}{t_{1}}=-t_{1}-\frac{2}{t_{1}} \Rightarrow t_{1}=\frac{2}{t_{1}} \\
& \Rightarrow t_{1}^{2}=2 \\
& \Rightarrow t_{1}= \pm \sqrt{2} \\
& \therefore m= \pm \sqrt{2}
\end{aligned}
$$

Conormal Points

Points on the parabola through which normals drawn are concurrent.

Here, $(A, B$ and $C) \rightarrow$ Conormal points
Feet of normal drawn from $P(h, k)$
Equation of Normal: $y=m x-2 a m-a m^{3}$
\therefore Normal passes through $P(h, k)$
$\Rightarrow k=m h-2 a m-a m^{3}$

$\Rightarrow a m^{3}+2 a m-m h+k=0$

Key Takeaways

Conormal Points

At most 3 real roots and at least one real root

O Key Takeaways

Conormal Points

Note:

From any given point $P(h, k)$; maximum three normals can be drawn to the parabola.

Also, If m_{1}, m_{2}, m_{3} represent their slopes, then,

$$
m_{1}+m_{2}+m_{3}=0
$$

$$
m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{1}=\frac{2 a-h}{a}
$$

$$
m_{1} m_{2} m_{3}=-\frac{k}{a}
$$

$$
t_{1}+t_{2}+t_{3}=0
$$

If the three normals drawn to the parabola, $y^{2}=2 x$ pass through the point ($a, 0$), $a \neq 0$ then ' a ' must be greater than:

JEE Main 2021

If the three normals drawn to the parabola, $y^{2}=2 x$ pass through the point ($a, 0$), $a \neq 0$ then ' a ' must be greater than:

Let the equation of the normal is :
$y=m x-2 a m-a m^{3}$
Here,
$4 a=2 \quad \Rightarrow a=\frac{1}{2}$
$y=m x-m-\frac{1}{2} m^{3}$
It passes through $A(a, 0)$ then
$0=m a-m-\frac{1}{2} m^{3}$
$m=0, \quad m^{2}-2(a-1)=0$
For real values of m

$$
2(a-1)>0 \quad \therefore a>1
$$

If the three normals drawn to the parabola, $y^{2}=2 x$ pass through the point ($a, 0$), $a \neq 0$ then ' a ' must be greater than:

JEE Main 2021

Session 04

Chord of Contact and

Introduction to Ellipse

I. The algebraic sum of ordinates of the feet of 3 normal (conormal points) drawn to a parabola from a given point is 0 .

$$
\text { NOTE: }\left(m_{1}+m_{2}+m_{3}\right)=0=\left(t_{1}+t_{2}+t_{3}\right)
$$

II. Centroid of the Δ formed by conormal points as vertices lie

IV. A circle circumscribing the triangle formed by three conormal points passes through the vertex of the parabola and its equation is $2\left(x^{2}+y^{2}\right)-2(h+2 a) x-k y=0$

?
The number of distinct normals that can be drawn from $(-2,1)$ to the parabola $y^{2}-4 x-2 y-3=0$

1

3

0

Given, $y^{2}-4 x-2 y-3=0$
$\Rightarrow(y-1)^{2}=4(x+1)$
So, the axis is $y-1=0$
Also, $(-2,1)$ lies on the axis of parabola and it is exterior to the parabola because

$$
1^{2}-4(-2)-2(1)-3=4>0
$$

Hence, only one normal is possible.

Given diagram of $Y^{2}=4 X$

$$
\begin{aligned}
& Y=y-1 \\
& X=x+1
\end{aligned}
$$

The number of distinct normals that can be drawn from $(-2,1)$ to the parabola $y^{2}-4 x-2 y-3=0$

0

Key Takeaways

Chord of Contact :
A chord joining two points of contact of a pair of a tangents drawn from an external point.

0
 Key Takeaways

Chord of Contact :

Equation of chord of contact $A B$ is $T=0$.
For $y^{2}=4 a x$, equation of tangent is :
$T=0 \Rightarrow y y_{1}-\frac{4 a\left(x+x_{1}\right)}{2}=0$

$$
\Rightarrow y y_{1}-2 a\left(x+x_{1}\right)=0
$$

\therefore Equation of chord of contact is
$y y_{1}-2 a\left(x+x_{1}\right)=0$

Note:
I. If $P\left(x_{1}, y_{1}\right)$ is an external point to the parabola, then $T=0$ represents the equation of chord of contact w.r.t P.

Key Takeaways

Note:

II. If $P\left(x_{1}, y_{1}\right)$ lies on the parabola, then $T=0$ represents the equation of tangent through P (point of contact).

For $y^{2}=4 a x$ i.e. $S \equiv y^{2}-4 a x=0$
Equation of $A B$ is $T=S_{1}$
$\Rightarrow y y_{1}=2 a\left(x+x_{1}\right)=y_{1}^{2}-4 a x_{1}$
Represents equation of the chord $A B$ bisected at point $P\left(x_{1}, y_{1}\right)$

T_{1} and T_{2} are pair of tangents drawn from an external point $P\left(x_{1}, y_{1}\right)$.

Then, combined equation of T_{1} and T_{2} is:
$S S_{1}=T^{2}$

For $y^{2}=4 a x$ i.e. $S \equiv y^{2}-4 a x$

We know, $S_{1} \equiv y_{1}^{2}-4 a x_{1}$ and $T \equiv y y_{1}-2 a\left(x+x_{1}\right)$
Then, $S S_{1}=T^{2}$ i.e. $\left(y^{2}-4 a x\right)\left(y_{1}^{2}-4 a x_{1}\right)=\left(y y_{1}-2 a\left(x+x_{1}\right)\right)^{2}$

Represents the combined equation of T_{1} and T_{2}

If a chord, which is not a tangent, of the parabola $y^{2}=16 x$ has the equation $2 x+y=p$, and midpoint (h, k), then which of the following is (are) possible value(s) of p, h and k ?

If a chord, which is not a tangent, of the parabola $y^{2}=16 x$ has the equation $2 x+y=p$, and midpoint (h, k), then which of the following is (are) possible value(s) of p, h and k ?

Equation of chord: $T=S_{1}$
$k y-8(x+h)=k^{2}-16 h$
$\Rightarrow-\frac{8}{k} x+y=k-\frac{8 h}{k}$
Comparing with given equation of chord, $2 x+y=p$
$-\frac{8}{k}=2 \quad \Rightarrow k=-4$
$k-\frac{8 h}{k}=p \quad \Rightarrow p=2 h-4$
($\because p \neq-2$, line is not tangent)
$\therefore p=2, h=3, k=-4$ is possible value

If a chord, which is not a tangent, of the parabola $y^{2}=16 x$ has the equation $2 x+y=p$, and midpoint (h, k), then which of the following is (are) possible value(s) of p, h and k ?

- Any ray parallel to the axis of the parabola will bounce off the parabola and pass through the Focus.
- Conversely, any ray (light ray) emanating from the focus will reflect off the parabola in a straight line parallel to the axis.

A ray of light moving parallel to the x-axis gets reflected from a parabolic mirror whose equation is $(y-4)^{2}=8(x+1)$. After reflection, the ray always passes through the point (α, β), find the value of $\alpha+\beta+10$.

As we know that all rays of light parallel to axis of the parabola are reflected through the focus of the parabola.
The equation of the given parabola is
$(y-4)^{2}=8(x+1) \Rightarrow Y^{2}=8 X$
where $Y=y-4$ and $X=x+1$
Now the focus of the parabola is ($a, 0$)
Therefore, $X=a, Y=0$
$\Rightarrow x+1=2$ and $y-4=0$
$\Rightarrow x=1$ and $y=4$
Hence, the focus is $(1,4)$
Thus $\alpha=1$ and $\beta=4$
Now, $\alpha+\beta+10=1+4+10=15$

ELLIPSE:

An ellipse is the locus of a moving point such that the ratio of its distance from a fixed point (focus) and a fixed line (directrix) is a positive constant (eccentricity) which is always less than $1(0<e<1)$.

- Let the fixed point be F (focus) and the fixed line (directrix) be $L: l x+m y+n=0$ then $\frac{F P}{P M}=e<1$.

- For $2^{\text {nd }}$ degree Non-Homogenous equation
$a x^{2}+b y^{2}+2 h x y+2 g x+2 f y+c=0$.
If $\Delta \neq 0, h^{2}<a b$ then it represents ellipse

Find equation of ellipse with focus as $(-1,1)$, eccentricity $=\frac{1}{2}$ and equation of directrix as $x-y+3=0$

We know $S P=e P M$
Let $P=(x, y)$
Now, the equation of ellipse will be:

$$
\sqrt{(x+1)^{2}+(y-1)^{2}}=\frac{1}{2} \cdot \frac{|x-y+3|}{\sqrt{1^{2}+1^{2}}}
$$

Squaring both sides

$$
\begin{aligned}
& 8(x+1)^{2}+8(y-1)^{2}=(x-y+3)^{2} \\
\Rightarrow & 7 x^{2}+7 y^{2}+10 x-10 y+2 x y+7=0
\end{aligned}
$$

- $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ This is the standard equation of the ellipse. where $b^{2}=a^{2}\left(1-e^{2}\right)$

Key Takeaways

Terms associated with an Ellipse

Centre :

- The point which bisects every chord of the ellipse drawn through it is called center of the ellipse.
- Here center is $0 \equiv(0,0)$.

- Foci : The foci are $F_{1} \equiv(-a e, 0)$ and $F_{2} \equiv(a e, 0)$.

O Key Takeaways

Terms associated with an Ellipse

Directrices:

- The equation of directrices are $x=$ $-\frac{a}{e}$ and $x=\frac{a}{e}$.

Vertices:

- The points of intersection f the ellipse with the line passing through the foci are called vertices.

Here Vertices are $A \equiv(-a, 0)$ and $A^{\prime} \equiv(a, 0)$

Key Takeaways

Terms associated with an Ellipse

Major Axis :

- The line which passes through the foci and is perpendicular to the directrices is called major axis.
Here the major axis intersects the
 ellipse at the vertices.
\Rightarrow The length of major axis is the distance between its vertices $=A A^{\prime} \Rightarrow A A^{\prime}=2 a$
\Rightarrow The major axis is the longest chord of an ellipse.
\Rightarrow Here the major axis is along the x - axis.
\therefore Equation of major axis is $y=0$.

Key Takeaways

Terms associated with an Ellipse

Minor Axis:

- The axis which is perpendicular bisector of the major axis is called minor axis.

Here the major axis intersects the ellipse at the vertices.

Length of minor axis:
\Rightarrow Let the ellipse intersect the minor axis at B and B^{\prime}
$\Rightarrow \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

- At B and $B^{\prime}, x=0$
$\Rightarrow y^{2}=b^{2} \Rightarrow y= \pm b \quad \therefore B \equiv(0,-b)$ and $B^{\prime} \equiv(0, b)$

Key Takeaways

Terms associated with an Ellipse
Length of minor axis:
At B and $B^{\prime}, x=0$
$\Rightarrow y^{2}=b^{2} \Rightarrow y= \pm b$

- $\therefore B \equiv(0,-b)$ and $B^{\prime} \equiv(0, b)$

\therefore Length of minor axis is $2 b$.
Where $b^{2}=a^{2}\left(1-e^{2}\right)$
Equation of minor axis :
- Here the minor axis is along the $y-$ axis.
\therefore Equation of minor axis is $x=0$

Terms associated with an Ellipse
Double Ordinate :

A chord perpendicular to major axis is called double ordinate.

Key Takeaways

Terms associated with an Ellipse
Focal Chord:
A chord passing through focus is called focal chord.

A focal chord perpendicular to the major axis is called Latus Rectum.

Length of Latus Rectum :
The length of latus rectum is given by $\frac{2 b^{2}}{a}$.
Here Latus rectum $\rightarrow P_{1} Q_{1}=P_{2} Q_{2}$

If the distance between the focii of an ellipse is 6 and the distance between its directrices is 12 , then the length of its latus rectum is

If the distance between the focii of an ellipse is 6 and the distance between its directrices is 12 , then the length of its latus rectum is

Let the equation of the ellipse be: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$
Now, $2 a e=6$ and $\frac{2 a}{e}=12$
$\Rightarrow a e=3$ and $\frac{a}{e}=6$
$\Rightarrow a^{2}=18$
$\Rightarrow(a e)^{2}=a^{2}-b^{2}=9$
$\Rightarrow b^{2}=9$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{\sqrt{18}}=3 \sqrt{2}$

If the distance between the focii of an ellipse is 6 and the distance between its directrices is 12 , then the length of its latus rectum is

- The distance between the focus to any point on the ellipse is called focal distance or focal radii.

Let $P \equiv(x, y)$ be any point on the ellipse.

- Then focal distance is $P F_{1}$ or $P F_{2}$.

Let $P(x, y)$ be a point on the ellipse.
$\frac{P F_{1}}{P M_{1}}=e \quad$ and $\quad \frac{P F_{2}}{P M_{2}}=e$
$\Rightarrow P F_{1}=e\left(P M_{1}\right)$ and $P F_{2}=e\left(P M_{2}\right) \cdots(i)$
$P M_{1}=\frac{a}{e}-x \quad$ and $\quad P M_{2}=\frac{a}{e}+x$
(i) $\left.\Rightarrow P F_{1}=e\left(\frac{a}{e}-x\right)\right)$ and $\left.P F_{2}=e\left(\frac{a}{e}+x\right)\right)$

\therefore Focal distances of $P(x, y)=a \pm e x$

Let $P Q$ be a focal chord of the parabola $y^{2}=4 x$, such that it subtends an angle of $\frac{\pi}{2}$ at the point $(3,0)$. Let the line segment $P Q$ be also a focal chord of the ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$. If e is the eccentricity of the ellipse E, then the value of $\frac{1}{e^{2}}$ is :

Let $P Q$ be a focal chord of the parabola $y^{2}=4 x$, such that it subtends an angle of $\frac{\pi}{2}$ at the point $(3,0)$. Let the line segment $P Q$ be also a focal chord of the ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$. If e is the eccentricity of the ellipse E, then the value of $\frac{1}{e^{2}}$ is :
$P \equiv\left(t^{2}, 2 t\right), Q \equiv\left(\frac{1}{t^{2}},-\frac{2}{t}\right)$
$m_{P R} \cdot m_{Q R}=-1 \Rightarrow \frac{\left(\frac{2}{t}\right)}{\left(3-\frac{1}{t^{2}}\right)} \cdot \frac{2 t}{t^{2}-3}=-1$
$\Rightarrow t= \pm 1$
$P \equiv(1,2), Q \equiv(1,-2)$
For the ellipse :

$$
\frac{1}{a^{2}}+\frac{4}{b^{2}}=1 \& a e=1
$$

Let $P Q$ be a focal chord of the parabola $y^{2}=4 x$, such that it subtends an angle of $\frac{\pi}{2}$ at the point $(3,0)$. Let the line segment $P Q$ be also a focal chord of the ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$. If e is the eccentricity of the ellipse E, then the value of $\frac{1}{e^{2}}$ is :
$\frac{1}{a^{2}}+\frac{4}{b^{2}}=1 \& a e=1$

$$
\frac{1}{a^{2}}+\frac{4}{a^{2}\left(1-e^{2}\right)}=1
$$

$$
e^{2}+\frac{4 e^{2}}{\left(1-e^{2}\right)}=1
$$

$$
\Rightarrow e^{2}=3-2 \sqrt{2}
$$

$$
\Rightarrow \frac{1}{e^{2}}=3+2 \sqrt{2}
$$

Let $P Q$ be a focal chord of the parabola $y^{2}=4 x$, such that it subtends an angle of $\frac{\pi}{2}$ at the point $(3,0)$. Let the line segment $P Q$ be also a focal chord of the ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$. If e is the eccentricity of the ellipse E, then the value of $\frac{1}{e^{2}}$ is :

An ellipse is the set of all points in a plane; the sum of whose distances from two fixed points (Foci) in the plane is a constant (length of major axis= $2 a$).

What is the eccentricity of ellipse if length of minor axis is equal to focal length.

What is the eccentricity of ellipse if length of minor axis is equal to focal length.

Let the ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $a>b$
According to the given condition, $2 b=2 a e$
We know, $c^{2}=a^{2}-b^{2}$
$\Rightarrow c^{2}=a^{2}-a^{2} e^{2}$
$\Rightarrow 2 a^{2} e^{2}=a^{2} \quad(\because c=a e)$
$\Rightarrow e^{2}=\frac{1}{2}$
$\Rightarrow e=\frac{1}{\sqrt{2}}$

What is the eccentricity of ellipse if length of minor axis is equal to focal length.

- Major axis is along y-axis and Minor axis is along x-axis
- Equation of a vertical ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where, $0<a<b$ and $a^{2}=b^{2}\left(1-e^{2}\right)$

(i) Vertical Ellipse:

Center :	$O(0,0)$
Foci:	$F_{1}(0, b e), F_{2}(0,-b e)$
Vertices:	$B(0, b), B^{\prime}(0,-b)$
Major Axis:	$B B^{\prime}$
Length of Major Axis :	$2 b$
Minor Axis:	$A A^{\prime}$
Length of Minor Axis:	$2 a$
Directrices:	$y= \pm \frac{b}{e}$
Length of L.R. :	$\frac{2 a^{2}}{b}$
Focal distances of $P(x, y):$	$b \pm e y$

(i) Vertical Ellipse:

Note:

- $P F_{1}+P F_{2}=2 b$ (length of the major axis)

$$
A F_{1}=A^{\prime} F_{1}=A F_{2}=A^{\prime} F_{2}=b
$$

Where, $A F_{1}=\sqrt{a^{2}+b^{2} e^{2}}=\sqrt{b^{2}}=b$

The ellipse is symmetric about both X and Y-axis.

Eccentricity, $e=\sqrt{1-\frac{a^{2}}{b^{2}}}$

Axes of ellipse parallel to co-ordinate axes:

Key Takeaways

Axes of ellipse parallel to co-ordinate axes:
Case (i): Major axis parallel to x-axis
Equation of ellipse: $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$
Where, $a>b, b^{2}=a^{2}\left(1-e^{2}\right)$

Center :	$C(h, k)$
Foci :	$F_{1}(h-a e, k), F_{2}(h+a e, k)$
Vertices:	$A(h-a, k), A^{\prime}(h+a, k)$

K Key Takeaways

Axes of ellipse parallel to co-ordinate axes:
Case (i): Major axis parallel to x-axis
Equation of ellipse: $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$

Length of Major Axis:	$A A^{\prime}=2 a$
Length of Minor Axis:	$B B^{\prime}=2 b$
Equation of Directrix:	$x=h \pm \frac{a}{e}$
Eccentricity:	$e=\sqrt{1-\frac{b^{2}}{a^{2}}}$

©
Axes of ellipse parallel to co-ordinate axes:

Case (i): Major axis parallel to x-axis
Equation of ellipse: $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$

Ends of L.R. :	$P_{1}\left(h-a e, k+\frac{b^{2}}{a}\right), Q_{1}\left(h-a e, k-\frac{b^{2}}{a}\right)$
Length of L.R.:	$P_{2}\left(h+a e, k+\frac{b^{2}}{a}\right), Q_{2}\left(h+a e, k-\frac{b^{2}}{a}\right)$

Case (ii): Major axis parallel to y-axis
Equation of ellipse: $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$

Ends of L.R.:	$P_{1}\left(h+\frac{a^{2}}{b}, k+b e\right), Q_{1}\left(h-\frac{a^{2}}{b}, k+b e\right)$
	$P_{2}\left(h+\frac{a^{2}}{b}, k-b e\right), Q_{2}\left(h-\frac{a^{2}}{b}, k-b e\right)$
Length of L.R.:	$\frac{2 a^{2}}{b}$

Case (ii): Major axis parallel to y-axis
Equation of ellipse: $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$

Length of Major Axis:	$B B^{\prime}=2 b$
Length of Minor Axis:	$A A^{\prime}=2 a$
Equation of Directrix:	$y=k \pm \frac{b}{e}$
Eccentricity :	$e=\sqrt{1-\frac{a^{2}}{b^{2}}}$

In an ellipse, with centre at the origin, if the difference of the lengths of major axis and minor axis is 10 and one of the foci is at $(0,5 \sqrt{3})$, then the length of its latus rectum is \qquad .

In an ellipse, with centre at the origin, if the difference of the lengths of major axis and minor axis is 10 and one of the foci is at $(0,5 \sqrt{3})$, then the
length of its latus rectum is \qquad .

Solution:

Given : An ellipse with Centre $\equiv(0,0)$
Focus $\equiv(0,5 \sqrt{3})$, lies on Y - axis
\therefore Major axis is along Y-axis. \therefore be $=5 \sqrt{3} \cdots(i)$

$$
\text { Also } 2 b-2 a=10 \Rightarrow b-a=5 \cdots(i i)
$$

$$
a^{2}=b^{2}\left(1-e^{2}\right)
$$

$$
\Rightarrow b^{2} e^{2}=b^{2}-a^{2} \Rightarrow(5 \sqrt{3})^{2}=(b+a)(b-a)
$$

$$
\Rightarrow 75=(b+a)(5)
$$

$$
\Rightarrow b+a=15 \cdots(i i i)
$$

In an ellipse, with centre at the origin, if the difference of the lengths of major axis and minor axis is 10 and one of the foci is at $(0,5 \sqrt{3})$, then the length of its latus rectum is \qquad .

Length of latus rectum $=\frac{2 a^{2}}{b}=5$

In an ellipse, with centre at the origin, if the difference of the lengths of major axis and minor axis is 10 and one of the foci is at $(0,5 \sqrt{3})$, then the length of its latus rectum is \qquad -.
 passes through which of the following points?

$$
(2, \sqrt{2})
$$

$$
(1,2 \sqrt{2})
$$

$(\sqrt{2}, 2)$
$(2,2 \sqrt{2})$

An ellipse, with foci at $(0,2)$ and $(0,-2)$ and minor axis of length 4, passes through which of the following points?

Solution:
Foci are $(0,2)$ and ($0,-2$)
So, major axis is $y-a x i s$.
Let the equation of ellipse be $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$
Given: $2 b=4$ and $2 c=4$
$\Rightarrow b=2, c=2$
$\Rightarrow c^{2}=4 \Rightarrow a^{2}-b^{2}=4$
$\Rightarrow a^{2}=8$
Therefore, equation of the ellipse is $\frac{x^{2}}{4}+\frac{y^{2}}{8}=1$
By putting all the points, we get that
$(\sqrt{2}, 2)$ lies on the ellipse.

An ellipse, with foci at $(0,2)$ and $(0,-2)$ and minor axis of length 4, passes through which of the following points?
$(2, \sqrt{2})$
$(1,2 \sqrt{2})$
$(\sqrt{2}, 2)$

Let S and S^{\prime} be foci of an ellipse and B be any one of the extremities of its minor axis. If $\Delta S^{\prime} B S$ is a right-angled triangle with right angle at B and area of $\Delta S^{\prime} B S=8 \mathrm{sq}$. units, then the length of a latus rectum of the ellipse (in units) is:

Let S and S^{\prime} be foci of an ellipse and B be any one of the extremities of its minor axis. If $\Delta S^{\prime} B S$ is a right-angled triangle with right angle at B and area of $\Delta S^{\prime} B S=8 \mathrm{sq}$. units, then the length of a latus rectum of the ellipse (in units) is:

Solution:

Let the equation of ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$
Where $S \equiv(a e, 0), S^{\prime} \equiv(-a e, 0)$ and $B \equiv(0, b)$
$\because \Delta S^{\prime} B S$ is a right-angled triangle with right angle at B

$\therefore\left(S^{\prime} B\right)^{2}+(S B)^{2}=\left(S S^{\prime}\right)^{2}$
$\Rightarrow a^{2} e^{2}+b^{2}+a^{2} e^{2}+b^{2}=4 a^{2} e^{2}$
$\Rightarrow b^{2}=a^{2} e^{2}$
$\Rightarrow e^{2}=\frac{b^{2}}{a^{2}}$
$\Rightarrow 1-\frac{b^{2}}{a^{2}}=\frac{b^{2}}{a^{2}}$

Let S and S^{\prime} be foci of an ellipse and B be any one of the extremities of its minor axis. If $\Delta S^{\prime} B S$ is a right-angled triangle with right angle at B and area of $\Delta S^{\prime} B S=8 \mathrm{sq}$. units, then the length of a latus rectum of the ellipse (in units) is:

Solution:

$$
\Rightarrow a^{2}=2 b^{2} \Rightarrow a=\sqrt{2} b
$$

Given, area of $\Delta\left(S^{\prime} B S\right)=8$ sq. units
$\Rightarrow \frac{1}{2} \times 2 a e \times b=8$
$\Rightarrow \sqrt{2} b \times \frac{b}{\sqrt{2} b} \times b=8$
$\Rightarrow b^{2}=8$
$\therefore b=2 \sqrt{2} \Rightarrow a=4$
So, length of latus rectum
$=\frac{2 b^{2}}{a}=\frac{2(8)}{4}=4$ units

Let S and S^{\prime} be foci of an ellipse and B be any one of the extremities of its minor axis. If $\Delta S^{\prime} B S$ is a right-angled triangle with right angle at B and area of $\Delta S^{\prime} B S=8 \mathrm{sq}$. units, then the length of a latus rectum of the ellipse (in units) is:

Key Takeaways

Equation of an Ellipse Referred to Two Perpendicular Lines as Axes:
Consider the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where $(a>b)$
Let $P(x, y)$ be any point on the ellipse
Then, $P M=y, P N=x$
\therefore Equation of ellipse: $\frac{P N^{2}}{a^{2}}+\frac{P M^{2}}{b^{2}}=1$

Suppose, if minor axis is $a_{1} x+b_{1} y+c_{1}=0 \longrightarrow L_{1}$ and major axis is $b_{1} x-a_{1} y+c_{2}=0 \longrightarrow L_{2}$

Key Takeaways

Equation of an Ellipse referred to Two Perpendicular Lines as Axes:
$P N=\frac{\left|a_{1} x+b_{1} y+c_{1}\right|}{\sqrt{a_{1}^{2}+b_{1}^{2}}}$ and $P M=\frac{\left|b_{1} x-a_{1} y+c_{2}\right|}{\sqrt{b_{1}^{2}+a_{1}^{2}}}$
$\frac{(P N)^{2}}{a^{2}}+\frac{(P M)^{2}}{b^{2}}=1 ; a>b$

Equation of ellipse: $\frac{\left(\frac{a_{1} x+b_{1} y+c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}}}\right)^{2}}{a^{2}}+\frac{\left(\frac{b_{1} x-a_{1} y+c_{2}}{\sqrt{b_{1}^{2}+a_{1}^{2}}}\right)^{2}}{b^{2}}=1$
Where $a>b$

Key Takeaways

Note:

- Centre is the point of intersection of L_{1} and L_{2}
- If $a>b$, then major axis lies along L_{2} and minor axis along L_{1}
- If $a>b, b^{2}=a^{2}\left(1-e^{2}\right)$
- If $a<b, a^{2}=b^{2}\left(1-e^{2}\right)$

Position of a Point W.R.T an Ellipse:
Let $P\left(x_{1}, y_{1}\right)$ be any point in the plane of an ellipse:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1=0
$$

i. If $S_{1}>0 \longrightarrow P$ lies outside the ellipse
ii. If $S_{1}=0 \longrightarrow P$ lies on the ellipse
iii. If $S_{1}<0 \longrightarrow P$ lies inside the ellipse

$$
[1,3] \text { and }[1,3]
$$

B

$$
\left[-\frac{1}{3}, \frac{1}{3}\right] \text { and }\left[-\frac{1}{3}, \frac{1}{3}\right]
$$

$$
\left[-\frac{1}{3}, \frac{1}{3}\right] \text { and }[1,3]
$$

$$
[1,3] \text { and }\left[-\frac{1}{3}, \frac{1}{3}\right]
$$

$$
[1,3] \text { and }[1,3]
$$

$$
\left[-\frac{1}{3}, \frac{1}{3}\right] \text { and }\left[-\frac{1}{3}, \frac{1}{3}\right]
$$

$$
[1,3] \text { and }\left[-\frac{1}{3}, \frac{1}{3}\right]
$$

Solution:

Given: $x^{2}+9 y^{2}-4 x+3=0$
$\Rightarrow\left(x^{2}-4 x+4\right)+9 y^{2}-1=0$
$\Rightarrow(x-2)^{2}+9 y^{2}=1$
$\Rightarrow \frac{(x-2)^{2}}{1}+\frac{y^{2}}{\left(\frac{1}{3}\right)^{2}}=1$
Since it is the equation of an ellipse,
Therefore, x and y will be on circumference of the ellipse.
$x-2 \in[-1,1]$
$\Rightarrow x \in[1,3]$
And $y \in\left[-\frac{1}{3}, \frac{1}{3}\right]$

Key Takeaways

Auxiliary Circle:

The circle described on the major axis as diameter is called the Auxiliary Circle of the given ellipse.
(i) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 ;(a>b)$

Equation of auxiliary circle $x^{2}+y^{2}=a^{2}$

Key Takeaways

Auxiliary Circle:
(ii) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 ;(a<b)$

Equation of auxiliary circle $x^{2}+y^{2}=b^{2}$

Consider the ellipse: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$
Auxiliary circle: $x^{2}+y^{2}=a^{2}$
Let Q be a point on Auxiliary circle
$Q M \perp$ Major-axis \longrightarrow Meets the ellipse at P
P is called corresponding point of Q

The angle, $\theta \equiv \angle Q O A$ is called Eccentric angle of the point P on the ellipse $(0 \leq \theta<2 \pi)$

- Also, $x=a \cos \theta, y=b \sin \theta$ are the

Parametric equation of the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,(a>b)
$$

- For Ellipse, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,(a<b)$

Equation of Auxiliary circle: $x^{2}+y^{2}=b^{2}$ and $Q \equiv(b \cos \theta, b \sin \theta)$
$P \equiv(a \cos \theta, b \sin \theta) \longrightarrow$ Parametric form
 $x=a \cos \theta, y=b \sin \theta \longrightarrow$ Parametric equation

Parametric equation:

$$
x=h+a \cos \theta, y=k+b \sin \theta
$$

Chord Joining Two Points:

Equation of a chord joining the two points $P(\alpha)$ and $Q(\beta)$ on the ellipse $S=0$

$$
\frac{x}{a} \cos \left(\frac{\alpha+\beta}{2}\right)+\frac{y}{b} \sin \left(\frac{\alpha+\beta}{2}\right)=\cos \left(\frac{\alpha-\beta}{2}\right)
$$

Find the maximum area of the rectangle that can be inscribed in the ellipse $S=0$

Solution:

Let equation of ellipse: $S \equiv \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Rectangle $P Q R S$ inscribed with its sides || axes

Let $P \equiv(a \cos \theta, b \sin \theta)$

Then, $P Q=2 b \sin \theta$ and, $P S=2 a \cos \theta$
\therefore Area of rectangle $=P Q \times P S$
$=2 b \sin \theta \times 2 a \cos \theta=2 a b \sin 2 \theta$
$=2 a b \sin 2 \theta \longrightarrow$ Maximum

Maximum area of the rectangle $=2 a b$
Note: Area of the ellipse $S=0 \longrightarrow \pi a b$

Position of point w.r.t ellipse:

(i) $E(P)>=<0$
P lies $\left\{\begin{array}{l}\text { Outside } S_{1}>0 \\ \text { On } S_{1}=0 \\ \text { Inside } S_{1}<0\end{array}\right.$
(ii). $P F_{1}+P F_{2}>=<2 a$

P lies $\left\{\begin{array}{l}\text { Outside } P F_{1}+P F_{2}>2 a \\ \text { On } P F_{1}+P F_{2}=2 a \\ \text { Inside } P F_{1}+P F_{2}<2 a\end{array}\right.$

- Solving equation of line with ellipse , we get

$$
\begin{gathered}
x^{2}\left(a^{2} m^{2}+b^{2}\right)+2 a^{2} c m x+a^{2}\left(c^{2}-b^{2}\right)=0 \\
D=a^{2} b^{2}\left(a^{2} m^{2}+b^{2}-c^{2}\right)
\end{gathered}
$$

Line : $y=m x+c$ Ellipse : $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

K Key Takeaways

Point Form :

Equation of tangent to an ellipse $S: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1=0$ at a point $P\left(x_{1}, y_{1}\right)$ is $T=0$
$x^{2} \rightarrow x x_{1}$
$y^{2} \rightarrow y y_{1}$
\therefore Equation $\Rightarrow \frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}-1=0$
For $S: \frac{\left(x^{\prime}\right)^{2}}{a^{2}}+\frac{\left(y^{\prime}\right)}{b^{2}}-1 \Rightarrow \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}-1=0$

$T: \frac{x^{\prime} x_{1}}{a^{2}}+\frac{y^{\prime} y_{1}}{b^{2}}-1=0 \Rightarrow \frac{(x-h) x_{1}}{a^{2}}+\frac{(y-k) y_{1}}{b^{2}}-1=0$

O Key Takeaways

Parametric Form:

Equation of tangent to an ellipse $S: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1=0$
at a point $P\left(x_{1}, y_{1}\right)$ is $\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}-1=0$

Let $P\left(x_{1}, y_{1}\right) \equiv P(a \cos \theta, b \sin \theta)$
$\Rightarrow \frac{x(a \cos \theta)}{a^{2}}+\frac{y(b \sin \theta)}{b^{2}}-1=0$
$\Rightarrow \frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta-1=0$

©

Slope Form :

The line $y=m x+c$ touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
If $a^{2} m^{2}+b^{2}=c^{2}$
$\Rightarrow c= \pm \sqrt{a^{2} m^{2}+b^{2}}$
So, equation of tangent to an ellipse $S=0$ having slope ' m ' is

$$
y=m x \pm \sqrt{a^{2} m^{2}+b^{2}}
$$

 tangent to the ellipse $\frac{x^{2}}{2}+\frac{y^{2}}{b}=1$ then the value of b is equal to :

Equation of parabola is: $y^{2}=4 x-20$
Tangent at $P(6,2)$ will be:
$2 y=4\left(\frac{x+6}{2}\right)-20$
$\Rightarrow 2 y=2 x+12-20$
$\Rightarrow y=x-4 .$. (1)
This is tangent to the ellipse, $\frac{x^{2}}{2}+\frac{y^{2}}{b}=1$ also
\therefore Applying condition of tangency, $c^{2}=a^{2} m^{2}+b^{2}$

$$
(-4)^{2}=(2)(1)+b
$$

$\Rightarrow b=14$

Let L be a tangent line to the parabola $y^{2}=4 x-20$ at $(6,2)$. If L is also a tangent to the ellipse $\frac{x^{2}}{2}+\frac{y^{2}}{b}=1$ then the value of b is equal to :

$$
\frac{128}{7}
$$

$$
\frac{4}{17}
$$

$$
\frac{2}{17}
$$

If the tangents to the ellipse $4 x^{2}+y^{2}=8$ at the points $(1,2)$ and (p, q) are perpendicular to each other, then the value p^{2} is equal to Solution:

```
JEE MAIN 2019
```

Given: Equation of the ellipse $4 x^{2}+y^{2}=8$
Equation of tangent at $\left(x_{1}, y_{1}\right)$ is $T=0$
\therefore Equation of the tangent at $(1,2)$ is $4 x(1)+y(2)=8$
$\Rightarrow 2 x+y=4 \cdots(i)$

Equation of the tangent at (p, q) is $4 x(p)+y(q)=8$
$\Rightarrow 4 p x+q y=8 \cdots(i i)$
Given, (i) is perpendicular to (ii)
\Rightarrow Product of their slopes $=-1$

If the tangents to the ellipse $4 x^{2}+y^{2}=8$ at the points $(1,2)$ and (p, q) are perpendicular to each other, then the value p^{2} is equal to

Solution:

$\Rightarrow 2 x+y=4 \cdots(i)$
$\Rightarrow 4 p x+q y=8 \cdots(i i)$
\Rightarrow Product of their slopes $=-1$
$\Rightarrow\left(-\frac{2}{1}\right) \times\left(-\frac{4 p}{q}\right)=-1$
$\Rightarrow q=-8 p \cdots(i i i)$
Also, the point (p, q) lies on the ellipse.

$$
\text { So, } 4 p^{2}+q^{2}=8
$$

From (iii) and (iv) by eliminating ' q ' we get

$$
4 p^{2}+(-8 p)^{2}=8
$$

$$
p^{2}=\frac{8}{68} \Rightarrow p^{2}=\frac{2}{17}
$$

If the tangents to the ellipse $4 x^{2}+y^{2}=8$ at the points $(1,2)$ and (p, q) are perpendicular to each other, then the value p^{2} is equal to

Note:
Locus of feet of perpendicular from foci upon any tangent is an auxiliary circle.

Note:

Product of the lengths of perpendiculars from foci upon any tangent of an ellipse is equal to the square of the semi minor axis.

Session 06
 Director Circle and
 Normal to Ellipse

If the tangents to the parabola $y^{2}=x$ at a point (α, β) where $\beta>0$, is also tangent to the ellipse $x^{2}+2 y^{2}=1$, then α is equal to :
a) $\sqrt{2}+1$
b) $\sqrt{2}-1$
c) $2 \sqrt{2}+1$
d) $2 \sqrt{2}-1$

Solution:
Tangent at $(\alpha, \beta),(\beta>0)$, to $S^{\prime}: y^{2}=x$ is also tangent to
$S: x^{2}+2 y^{2}=1 \Rightarrow \frac{x^{2}}{1}+\frac{y^{2}}{\frac{1}{2}}=1$.
(α, β) lies on $y^{2}=x \Rightarrow \beta^{2}=\alpha \cdots(i)$
Equation of the tangent at (α, β) to the parabola $y^{2}=x$ is $T=0$.

$\Rightarrow y(\beta)=\frac{1}{2}(x+\alpha)$
$y=\frac{x}{2 \beta}+\frac{\alpha}{2 \beta} \cdots(i i)$
(ii) is also a tangent to $S: \frac{x^{2}}{1}+\frac{y^{2}}{\frac{1}{2}}=1$

If the tangents to the parabola $y^{2}=x$ at a point (α, β) where $\beta>0$, is also tangent to the ellipse $x^{2}+2 y^{2}=1$, then α is equal to :
a) $\sqrt{2}+1$
b) $\sqrt{2}-1$
c) $2 \sqrt{2}+1$
d) $2 \sqrt{2}-1$

JEE MAIN 2019
Solution:
Condition of tangency : $c^{2}=a^{2} m^{2}+b^{2}$
Here $c=\frac{\alpha}{2 \beta}, m=\frac{1}{2 \beta}, a^{2}=1, b^{2}=\frac{1}{2}$
$\therefore \frac{\alpha^{2}}{4 \beta^{2}}=1 .\left(\frac{1}{4 \beta^{2}}\right)+\frac{1}{2}$
$\Rightarrow 1+2 \beta^{2}=\alpha^{2}$

$\Rightarrow 1+2 \alpha=\alpha^{2} \quad\left(\because \beta^{2}=\alpha\right)$
$\Rightarrow \alpha^{2}-2 \alpha-1=0$
$\Rightarrow \alpha=1 \pm \sqrt{2}\left(\because \alpha=\beta^{2}\right.$, it cannot be negative $)$
$\Rightarrow \alpha=1+\sqrt{2}$

If two tangents drawn from a point (α, β) lying on the ellipse $25 x^{2}+4 y^{2}=1$ to the parabola $y^{2}=4 x$ are such that the slope of one tangent is four times the other, then the value of $(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$ equals:

Solution:

Since (α, β) lying on the ellipse $25 x^{2}+4 y^{2}=1 \ldots$ (1)
Tangent to the parabola, $y=m x+\frac{1}{m}$ passes through (α, β).
So, $\alpha m^{2}-\beta m+1=0$ has roots m_{1} and $4 m_{1}$.
$\therefore m_{1}+4 m_{1}=\frac{\beta}{\alpha}$ and $m_{1} \cdot 4 m_{1}=\frac{1}{\alpha}$
Gives that $4 \beta^{2}=25 \alpha \ldots$ (2)
From (1) and (2), we get:

$$
\begin{aligned}
& 25\left(\alpha^{2}+\alpha\right)=1 \\
& \Rightarrow\left(\alpha^{2}+\alpha\right)=\frac{1}{25}
\end{aligned}
$$

\Rightarrow If two tangents drawn from a point (α, β) lying on the ellipse $25 x^{2}+4 y^{2}=1$ to the parabola $y^{2}=4 x$ are such that the slope of one tangent is four times the other, then the value of $(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$ equals:

Solution:

Now, $(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$
$=25(2 \alpha+1)^{2}+(100 \alpha+50)^{2} \quad\left(\because 4 \beta^{2}=25 \alpha\right)$
$=25(2 \alpha+1)^{2}+2500(2 \alpha+1)^{2}$
$=25 \times 101\left(4 \alpha^{2}+4 \alpha+1\right)$
$=25 \times 101\left(\frac{4}{25}+1\right)=2929$
$?$
If m is the slope of a common tangent to the curves $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and $x^{2}+y^{2}=12$, then $12 m^{2}$ is equal to:

If m is the slope of a common tangent to the curves $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and $x^{2}+y^{2}=12$, then $12 m^{2}$ is equal to:
Solution:
$C_{1}: \frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and $C_{2}: x^{2}+y^{2}=12$
Let $y=m x \pm \sqrt{16 m^{2}+9}$ be any tangent to C_{1} and if this is also tangent to C_{2} then

$$
\begin{aligned}
& \left|\frac{\sqrt{16 m^{2}+9}}{\sqrt{m^{2}+1}}\right|=\sqrt{12} \\
& \Rightarrow 16 m^{2}+9=12 m^{2}+12 \\
& \Rightarrow 4 m^{2}=3 \\
& \Rightarrow 12 m^{2}=9
\end{aligned}
$$

If m is the slope of a common tangent to the curves $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and $x^{2}+y^{2}=12$, then $12 m^{2}$ is equal to:

Key Takeaways

Director Circle :

The locus of the points of intersection of perpendicular tangents to an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is a concentric circle called director circle, given by $x^{2}+y^{2}=a^{2}+b^{2}$.

Proof:

Let $P \equiv(h, k)$ be a point outside the ellipse $S=0$
Equation of tangents to the ellipse is $y=m x \pm \sqrt{a^{2} m^{2}+b^{2}}$
Tangents pass through $P \equiv(h, k)$

$$
\Rightarrow k=m h \pm \sqrt{a^{2} m^{2}+b^{2}} \Rightarrow k-m h= \pm \sqrt{a^{2} m^{2}+b^{2}}
$$

Key Takeaways

$$
\Rightarrow k-m h= \pm \sqrt{a^{2} m^{2}+b^{2}}
$$

Squaring both sides,

$$
\begin{aligned}
& \Rightarrow k^{2}+m^{2} h^{2}-2 m h k=a^{2} m^{2}+b^{2} \\
& \Rightarrow m^{2}\left(h^{2}-a^{2}\right)-2 m h k+\left(k^{2}-b^{2}\right)=0 \cdots(i)
\end{aligned}
$$

(i) is a quadratic equation in m whose roots are m_{1} and m_{2} (slopes of tangents T_{1} and T_{2})

$$
\begin{aligned}
& \Rightarrow m^{2}\left(h^{2}-a^{2}\right)-2 m h k+\left(k^{2}-b^{2}\right)=0 \cdots(i) \\
& T_{1} \perp^{r} T_{2} \Rightarrow m_{1} \cdot m_{2}=-1 \Rightarrow \text { Product of roots of }(i)=-1 \\
& \Rightarrow \frac{k^{2}-b^{2}}{h^{2}-a^{2}}=-1 \Rightarrow h^{2}+k^{2}=a^{2}+b^{2}
\end{aligned}
$$

$\Rightarrow h^{2}+k^{2}=a^{2}+b^{2}$
Replace $h \rightarrow x$ and $k \rightarrow y$
$\Rightarrow x^{2}+y^{2}=a^{2}+b^{2} \rightarrow$ Director circle
Director circle of $\frac{(x-a)^{2}}{a^{2}}+\frac{(y-\beta)^{2}}{b^{2}}=1$

is $(x-a)^{2}+(y-\beta)^{2}=a^{2}+b^{2}$

Find the angle between the tangents drawn from any point on the circle $x^{2}+y^{2}=41$ to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$.

Find the angle between the tangents drawn from any point on the circle $x^{2}+y^{2}=41$ to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$.
Solution:
Given : $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \rightarrow$ Ellipse

$$
x^{2}+y^{2}=41 \rightarrow \text { Circle }
$$

$x^{2}+y^{2}=41=25+16$
$\Rightarrow x^{2}+y^{2}=a^{2}+b^{2} \rightarrow$ Director circle

Director circle is the locus of points of intersection of perpendicular tangents to the ellipse.
\therefore Angle between the tangents is $\frac{\pi}{2}$

Find the angle between the tangents drawn from any point on the circle $x^{2}+y^{2}=41$ to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$.

The equation of normal at $P \equiv\left(x_{1}, y_{1}\right)$ on the ellipse $S=0$ is given by

$$
\frac{a^{2} x}{x_{1}}-\frac{b^{2} y}{y_{1}}=a^{2}-b^{2}
$$

Equation of Normal : Parametric Form

The equation of normal at $P(\theta)$ on the ellipse $S=0$ is given by

$$
\frac{a x}{\cos \theta}-\frac{b y}{\sin \theta}=a^{2}-b^{2}=a^{2} e^{2}
$$

where $P(\theta) \equiv(a \cos \theta, b \sin \theta)$

The equation of normal to the ellipse
$S=0$ whose slope is m is given by
$y=m x \mp \frac{\left(a^{2}-b^{2}\right) m}{\sqrt{a^{2}+b^{2} m}}$
where $P \equiv\left(\pm \frac{a^{2}}{\sqrt{a^{2}+b^{2} m^{2}}}, \pm \frac{m b^{2}}{\sqrt{a^{2}+b^{2} m^{2}}}\right)$

Let $x=4$ be a directrix to an ellipse whose centre is at origin and its eccentricity is 0.5 . If $P(1, \beta), \beta>0$, is a point on this ellipse, then the equation of the normal to it at P is
a) $8 x-2 y=5$
b) $4 x-2 y=1$
c) $7 x-4 y=1$
d) $4 x-3 y=2$

Solution:
Ellipse : Center $\equiv(0,0)$, Directrix $x=4$ and $e=0.5$
Directrix : $x=\frac{a}{e}=4 \Rightarrow \frac{a}{0.5}=4 \quad \Rightarrow a=2$
$b^{2}=a^{2}\left(1-e^{2}\right)=4\left(1-\frac{1}{4}\right)=3$
\therefore Equation of ellipse is $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$

$P(1, \beta)$ lies on ellipse
$\Rightarrow \frac{1}{4}+\frac{\beta^{2}}{3}=1 \Rightarrow \beta=\frac{3}{2}(\because \beta>0)$

Let $x=4$ be a directrix to an ellipse whose centre is at origin and its eccentricity is 0.5 . If $P(1, \beta), \beta>0$, is a point on this ellipse, then the equation of the normal to it at P is
a) $8 x-2 y=5$
b) $4 x-2 y=1$
c) $7 x-4 y=1$
d) $4 x-3 y=2$

Solution:
\therefore Equation of ellipse is $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$
$\Rightarrow \beta=\frac{3}{2}(\because \beta>0)$
$\therefore P \equiv(1, \beta) \equiv\left(1, \frac{3}{2}\right)$
Equation of normal : $\frac{a^{2} x}{x_{1}}-\frac{b^{2} y}{y_{1}}=a^{2}-b^{2}$

$\Rightarrow \frac{4 x}{1}-\frac{3 y}{\left(\frac{3}{2}\right)}=4-3$
$\Rightarrow 4 x-2 y=1$

If the normal at an end of a latus rectum of an ellipse passes through an extremity of the minor axis, then the eccentricity e of the ellipse satisfies :

If the normal at an end of a latus rectum of an ellipse passes through an extremity of the minor axis, then the eccentricity e of the ellipse satisfies :

Solution:

Let the ellipse be: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Equation of normal at $\left(a e, \frac{b^{2}}{a}\right)$
$\frac{a^{2} x}{a e}-\frac{b^{2} y}{\frac{b^{2}}{a}}=a^{2} e^{2}$
$\Rightarrow \frac{a x}{e}-a y=a^{2} e^{2}$
$\Rightarrow \frac{x}{e}-y=a e^{2}$

Since, it passes through $(0,-b)$

$$
\begin{aligned}
& \therefore b=a e^{2} \\
& \Rightarrow b^{2}=a^{2} e^{4} \\
& \Rightarrow a^{2}\left(1-e^{2}\right)=a^{2} e^{4} \\
& \Rightarrow e^{4}+e^{2}-1=0
\end{aligned}
$$

If the normal at an end of a latus rectum of an ellipse passes through an extremity of the minor axis, then the eccentricity e of the ellipse satisfies :

Pair of Tangents:

The combined equation of the pair of tangents from an external point $P\left(x_{1}, y_{1}\right)$ to the ellipse $S=0$ is $T^{2}=S \cdot S_{1}$

Where $S: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1$

$$
\begin{aligned}
& T: \frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}-1 \\
& S_{1}: \frac{x_{1}^{2}}{a^{2}}+\frac{y_{1}^{2}}{b^{2}}-1
\end{aligned}
$$

If the pair of tangents drawn from an external point $P\left(x_{1}, y_{1}\right)$ to the ellipse $S=0$ touch it at points A and B, then $A B$ is called chord of contact.

Equaton of $A B$ is $T=0$

If equation of $A B$ is $l x+m y+n=0$, then

$$
P \equiv\left(\frac{-a^{2} l}{n}, \frac{-b^{2} m}{n}\right)
$$

Chord with given midpoint :
The equation of a chord of the ellipse $S=0$ whose midpoint is $P\left(x_{1}, y_{1}\right)$ is $T=S_{1}$.

\qquad -.

Solution:
Given: Ellipse: $x^{2}+4 y^{2}=4$
Line: $x-y-5=0$
$\Rightarrow S \equiv \frac{x^{2}}{4}+\frac{y^{2}}{1}-1=0$
Let $P(\lambda, \lambda-5)$ be any point on $x-y-5=0, \lambda \in R$

Equation of chord of contact of P is $T=0$
$\Rightarrow \frac{x(\lambda)}{4}+\frac{y(\lambda-5)}{1}=1$
$\Rightarrow \lambda x+4 \lambda y-20 y=4$

$\Rightarrow(-20 y-4)+\lambda(x+4 y)=0$

The chords of contact of all the points on the line $x-y-5=0$ with respect to the ellipse $x^{2}+4 y^{2}=4$ always passes through a fixed point \qquad .

Solution:
$\Rightarrow \underbrace{(-20 y-4)}_{L_{1}}+\lambda \underbrace{(x+4 y)}_{L_{2}}=0$
$L_{1}+\lambda L_{2}=0$
Family of concurrent lines, passing through the point of intersection of the two lines.

$$
\left.\begin{array}{l}
-20 y-4=0 \\
x+4 y=0
\end{array}\right\} \text { Point of intersection }
$$

$$
\text { Point of intersection } \equiv\left(\frac{4}{5}, \frac{-1}{5}\right)
$$

i. The incident ray from focus S^{\prime} / F_{1} after reflection by ellipse at point P passes through other focus S / F_{2}.

ii. If $P S Q$ is a focal chord of the ellipse $S=0$, then $\frac{1}{S P}+\frac{1}{S Q}=\frac{2 a}{b^{2}}$ or Semi latus rectum is the H.M. of $S P$ and $S Q$.

iii. The ratio of area of any triangle inscribed in an ellipse to the area of triangle formed by corresponding points on the auxiliary circle is equal to the ratio of semi-minor axis to semi major axis.

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 ; a>b \\
& \frac{A r \cdot \Delta_{1}}{A r \cdot \Delta_{2}}=\frac{b}{a}
\end{aligned}
$$

iv. The portion of the tangent to an ellipse between the point of contact and the directrix subtends a right angle at the corresponding focus.

v. Chord of contact of any point on the directrix passes through the corresponding focus.

Session 07

Introduction to Hyperbola

$?$
If the normal to the ellipse $3 x^{2}+4 y^{2}=12$ at a point P on it is parallel to the line, $2 x+y=4$ and the tangent to the ellipse at P passes through $Q(4,4)$ then $P Q$ is equal to:

If the normal to the ellipse $3 x^{2}+4 y^{2}=12$ at a point P on it is parallel to the line, $2 x+y=4$ and the tangent to the ellipse at P passes through $Q(4,4)$ then $P Q$ is equal to: Solution:

Equation of ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$
Let point which is normal to the ellipse be $P(2 \cos \theta, \sqrt{3} \sin \theta)$
\therefore Equation of normal: $2 x \sec \theta-\sqrt{3} y \operatorname{cosec} \theta=1$
Equation of normal parallel to the line, $2 x+y=4$

$$
\begin{align*}
& \text { Therefore } \frac{2 \sec \theta}{\sqrt{3} \operatorname{cosec} \theta}=-2 \\
& \Rightarrow \tan \theta=-\sqrt{3} \ldots \text { (1) } \tag{1}
\end{align*}
$$

If the normal to the ellipse $3 x^{2}+4 y^{2}=12$ at a point P on it is parallel to the line, $2 x+y=4$ and the tangent to the ellipse at P passes through $Q(4,4)$ then $P Q$ is equal to: Solution:

Similarly, equation of tangent at point P :
$\frac{x \cdot 2 \cos \theta}{4}+\frac{y \cdot \sqrt{3} \sin \theta}{3}=1$
\because tangent passes through point $Q(4,4)$
$\therefore 2 \sqrt{3} \cos \theta+4 \sin \theta=\sqrt{3} \ldots$ (2)
Solving equation (1) and (2), we get
$\Rightarrow \theta=\frac{2 \pi}{3}$
$\therefore P\left(-1, \frac{3}{2}\right)$ \& $Q(4,4)$
Hence $P Q=\frac{5 \sqrt{5}}{2}$ units

If the normal to the ellipse $3 x^{2}+4 y^{2}=12$ at a point P on it is parallel to the line, $2 x+y=4$ and the tangent to the ellipse at P passes through $Q(4,4)$ then $P Q$ is equal to:

An ellipse E has its centre $C(1,3)$ focus at $S(6,3)$ and passing through the point $P(4,7)$.
i. Then the product of the lengths of the perpendicular segments from the foci on tangent at point P is \qquad .
 passing through the point $P(4,7)$.
ii. Then if the normal at a variable point on the ellipse (E) meets its axes in Q and R then the locus of the mid point of $Q R$ is a conic with an eccentricity $\left(e^{\prime}\right)$
(A) $\frac{3}{\sqrt{10}}$

B $\frac{\sqrt{5}}{3}$

$\frac{3}{\sqrt{5}}$

$$
\frac{\sqrt{10}}{3}
$$

An ellipse E has its centre $C(1,3)$ focus at $S(6,3)$ and passing through the point $P(4,7)$.
i. Then the product of the lengths of the perpendicular segments from the foci on tangent at point P is \qquad .

Given: Centre $C \equiv(1,3)$
Focus $S \equiv(6,3), \mathrm{S}^{\prime} \equiv(-4,3)$
\{Mid-point of foci is centre\}
Point on Ellipse, $P \equiv(4,7)$

Product of the lengths of perpendiculars from foci upon any tangent of an ellipse is equal to the square of the semi minor axis.

An ellipse E has its centre $C(1,3)$ focus at $S(6,3)$ and passing through the point $P(4,7)$.
i. Then the product of the lengths of the perpendicular segments from the foci on tangent at point P is \qquad .

We know, $P S+P S^{\prime}=2 a$

$$
\begin{aligned}
& b^{2}=a^{2}\left(1-e^{2}\right) \\
& S S^{\prime}=2 a e \\
& P S=\sqrt{(4+4)^{2}+(7-3)^{2}}=4 \sqrt{5} \\
& P S^{\prime}=\sqrt{(6-4)^{2}+(7-3)^{2}}=2 \sqrt{5} \\
& \Rightarrow P S+P S^{\prime}=6 \sqrt{5}=2 a \\
& \Rightarrow a=3 \sqrt{5}
\end{aligned}
$$

An ellipse E has its centre $C(1,3)$ focus at $S(6,3)$ and passing through the point $P(4,7)$.
i. Then the product of the lengths of the perpendicular segments from the foci on tangent at point P is \qquad .

Also, $S S^{\prime}=10=2 a e$
$\Rightarrow a e=5$
$\Rightarrow e=\frac{\sqrt{5}}{3}$
Now, $b^{2}=a^{2}\left(1-e^{2}\right)$
$\Rightarrow b^{2}=45\left(1-\frac{5}{9}\right)$

$$
\Rightarrow b^{2}=20
$$

An ellipse E has its centre $C(1,3)$ focus at $S(6,3)$ and passing through the point $P(4,7)$.
i. Then the product of the lengths of the perpendicular segments from the foci on tangent at point P is \qquad .

An ellipse E has its centre $C(1,3)$ focus at $S(6,3)$ and passing through the point $P(4,7)$.
ii. Then if the normal at a variable point on the ellipse (E) meets its axes in Q and R then the locus of the mid point of $Q R$ is a conic with an eccentricity $\left(e^{\prime}\right)$ \qquad .

Given: Centre $C \equiv(1,3)$
Focus $S \equiv(6,3), \mathrm{S}^{\prime} \equiv(-4,3)$
Equation of ellipse: $\frac{(x-\alpha)^{2}}{a^{2}}+\frac{(y-\beta)^{2}}{b^{2}}=1$
$\Rightarrow \frac{(x-1)^{2}}{45}+\frac{(y-3)^{2}}{20}=1$
or $\frac{x^{\prime 2}}{45}+\frac{y^{\prime 2}}{20}=1$

An ellipse E has its centre $C(1,3)$ focus at $S(6,3)$ and passing through the point $P(4,7)$.
ii. Then if the normal at a variable point on the ellipse (E) meets its axes in Q and R then the locus of the mid point of $Q R$ is a conic with an eccentricity $\left(e^{\prime}\right)$

Equation of normal at $P: \frac{a x^{\prime}}{\cos \theta}-\frac{b y^{\prime}}{\sin \theta}=a^{2}-b^{2}$

$$
\Rightarrow \frac{x^{\prime}}{\frac{\left(a^{2}-b^{2}\right) \cos \theta}{a}}-\frac{y^{\prime}}{\frac{\left(a^{2}-b^{2}\right) \sin \theta}{b}}=1
$$

Let mid-point of $Q R \equiv(h, k)$

$$
\begin{aligned}
& h=\frac{\left(a^{2}-b^{2}\right) \cos \theta}{2 a}, k=\frac{\left(a^{2}-b^{2}\right) \sin \theta}{2 b} \\
& \Rightarrow \cos ^{2} \theta+\sin ^{2} \theta=\frac{4 a^{2} h^{2}}{\left(a^{2}-b^{2}\right)^{2}}+\frac{4 b^{2} k^{2}}{\left(a^{2}-b^{2}\right)^{2}}=1
\end{aligned}
$$

Replacing (h, k) with $\left(x^{\prime}, y^{\prime}\right)$

$$
\Rightarrow \frac{x^{\prime 2}}{\frac{\left(a^{2}-b^{2}\right)^{2}}{4 a^{2}}}+\frac{y^{\prime 2}}{\frac{\left(a^{2}-b^{2}\right)^{2}}{4 b^{2}}}=1
$$

An ellipse E has its centre $C(1,3)$ focus at $S(6,3)$ and passing through the point $P(4,7)$.
ii. Then if the normal at a variable point on the ellipse (E) meets its axes in Q and R then the locus of the mid point of $Q R$ is a conic with an eccentricity $\left(e^{\prime}\right)$

Comparing with: $\frac{x^{\prime^{2}}}{A^{2}}+\frac{y^{\prime 2}}{B^{2}}=1,(B>A)$
$\Rightarrow A^{2}=B^{2}\left(1-e^{\prime 2}\right)$
$\Rightarrow \frac{\left(a^{2}-b^{2}\right)^{2}}{16 a^{2}}=\frac{\left(a^{2}-b^{2}\right)^{2}}{16 b^{2}}\left(1-e^{\prime 2}\right)$
$\Rightarrow b^{2}=a^{2}\left(1-e^{\prime 2}\right)$

$$
\begin{aligned}
& \text { We will get same eccentricity as the } \\
& \text { eccentricity of given ellipse } \therefore e=\frac{\sqrt{5}}{3} \text {. }
\end{aligned}
$$

We have calculated: $a^{2}=45, b^{2}=20$
$\Rightarrow a^{2}>b^{2}$
$\Rightarrow \frac{1}{a^{2}}<\frac{1}{b^{2}}$
$\Rightarrow \frac{1}{4 a^{2}}<\frac{1}{4 b^{2}}$
$\Rightarrow \frac{\left(a^{2}-b^{2}\right)^{2}}{4 a^{2}}<\frac{\left(a^{2}-b^{2}\right)^{2}}{4 b^{2}}$
$\Rightarrow B>A$

An ellipse E has its centre $C(1,3)$ focus at $S(6,3)$ and passing through the point $P(4,7)$.
ii. Then if the normal at a variable point on the ellipse (E) meets its axes in Q and R then the locus of the mid point of $Q R$ is a conic with an eccentricity $\left(e^{\prime}\right)$
A) $\frac{3}{\sqrt{10}}$
(B) $\frac{\sqrt{5}}{3}$

Key Takeaways

Analytical Interpretation

- A conic is the locus of a moving point such that ratio of its distance from a fixed point (focus) to a fixed straight line (directrix) is always a constant.

$$
\frac{\text { Distance from a fixed point }}{\text { Distance from a fixed line }}=\text { CONST ANT }
$$

Conics \rightarrow The collection of all points P such that

$$
\frac{P S}{P M}=\text { Constant }=\text { Eccentricity }(e) \geq 0
$$

Key Takeaways

Hyperbola:

Hyperbola is the locus of a moving point such that the ratio of its distance from a fixed point (focus) and a fixed line (directrix) is a constant which is always greater than $1(e>1)$.

Let the fixed point be F (focus) and the fixed line (directrix) be L : $l x+m y+n=0$.

Key Takeaways

Hyperbola:

Hence for hyperbola, there are two foci (F_{1} and F_{2}) and two directrices $\left(D_{1}\right.$ and $\left.D_{2}\right)$ and C is the centre.

Find the equation of the hyperbola whose focus is $(1,2)$, directrix is $2 x+y-1=0$ and eccentricity is $\sqrt{3}$.

Solution:
Given:
Focus, $F \equiv(1,2), e=\sqrt{3}$
Directrix: $L \equiv 2 x+y-1=0$

Let $P(h, k)$ be a moving point.
$\frac{P F}{P M}=e \Rightarrow P F=e \cdot P M$

$$
2 x+y-1=0
$$

$\Rightarrow \sqrt{(h-1)^{2}+(k-2)^{2}}=\sqrt{3} \cdot \frac{|2 h+k-1|}{\sqrt{5}}$

Find the equation of the hyperbola whose focus is $(1,2)$, directrix is $2 x+y-1=0$ and eccentricity is $\sqrt{3}$.

Solution:

$$
\begin{aligned}
& 5\left(h^{2}-2 h+1+k^{2}-4 k+4\right)=3\left(4 h^{2}+k^{2}+1+4 h k-2 k-4 h\right) \\
& \Rightarrow 7 h^{2}+12 h k-2 k^{2}-2 h+14 k-22=0 \rightarrow \text { Locus of } P(h, k)
\end{aligned}
$$

Replace $h \rightarrow x$ and $k \rightarrow y$

$$
\Delta \neq 0, h^{2}>a b
$$

$\Rightarrow \underbrace{7 x^{2}+12 x y-2 y^{2}-2 x+14 y-22=0}$
Equation of the hyperbola
$h^{2}=(6)^{2}=36$ and $a b=-14$
$\Rightarrow h^{2}>a b$
©
Standard vs Conjugate Hyperbola:
Equation of hyperbola
Figure
a^{2}
a^{2}
Centre
$\begin{aligned} & b^{2} \\ & \text { Vertices }\end{aligned}$
$\begin{aligned} & \text { Equation of transverse } \\ & \text { axis } \\ & \text { Equation of conjugate } \\ & \text { axis }\end{aligned}$

Equation of hyperbola	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	$\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$
Eccentricity	$e=\sqrt{1+\frac{b^{2}}{a^{2}}}$	$e=\sqrt{1+\frac{a^{2}}{b^{2}}}$
Equation of directrix	$x= \pm \frac{a}{e}$	$y= \pm \frac{b}{e}$
Coordinates of foci	$(\pm a e, 0)$	$(0, \pm b e)$
Length of LR	$\frac{2 b^{2}}{a}$	$\frac{2 a^{2}}{b}$
Length of Transverse Axis	$2 a$	$2 b$
Length of Conjugate Axis	$2 b$	$2 a$

Note: $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$ is said to be conjugate hyperbola for $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and if e_{H} and $e_{C H}$ are eccentricities of hyperbola and its conjugate, then $\frac{1}{e_{H}{ }^{2}}+\frac{1}{e_{C H}{ }^{2}}=1$

Equation of hyperbola:
$\frac{\left(\frac{a_{1} x+b_{1} y+c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}}}\right)^{2}}{a^{2}}-\frac{\left(\frac{b_{1} x-a_{1} y+c_{2}}{\sqrt{b_{1}^{2}+a_{1}^{2}}}\right)^{2}}{b^{2}}=1$
Suppose, if conjugate axis is L_{1} : $a_{1} x+b_{1} y+c_{1}=0$ And transverse axis is $L_{2}: b_{1} x-a_{1} y+c_{2}=0$

$$
e=\sqrt{\frac{a^{2}+b^{2}}{a^{2}}}
$$

Centre of the hyperbola is the point of intersection of the lines $L_{1}=0$ and $L_{2}=0$

Let $S=\left\{(x, y) \in \mathbb{R}^{2}: \frac{y^{2}}{1+r}-\frac{x^{2}}{1-r}=1\right\}$ where $r \neq \pm 1$. Then S represents:

A
An ellipse whose eccentricity is $\sqrt{\frac{2}{r+1}}$, when $r>1$

B
An ellipse whose eccentricity is $\frac{1}{\sqrt{r+1}}$, when $r>1$

C
A hyperbola whose eccentricity is $\frac{2}{\sqrt{r+1}}$, when $0<r<1$

(D)
A hyperbola whose eccentricity is $\frac{2}{\sqrt{1-r}}$, when $0<r<1$

E0 Let $S=\left\{(x, y) \in \mathbb{R}^{2}: \frac{y^{2}}{1+r}-\frac{x^{2}}{1-r}=1\right\}$ where $r \neq \pm 1$. Then S represents:
Solution:
JEE Main 2019

$$
\frac{y^{2}}{1+r}-\frac{x^{2}}{1-r}=1
$$

Since, $r \neq \pm 1$, we have two cases:
(i) When $r>1, S$ represents ellipse
$\therefore \frac{y^{2}}{1+r}-\frac{x^{2}}{1-r}=1$
$\Rightarrow \frac{y^{2}}{1+r}+\frac{x^{2}}{r-1}=1$
So, $a^{2}=1+r, b^{2}=r-1$
$\Rightarrow e=\sqrt{1-\frac{r-1}{r+1}} \quad\left(\because e=\sqrt{1-\frac{b^{2}}{a^{2}}}\right)$
$\Rightarrow e=\sqrt{\frac{2}{r+1}}$
(ii) When $0<r<1$, S represents hyperbola
$\frac{y^{2}}{1+r}-\frac{x^{2}}{1-r}=1 \quad$ (Conjugate hyperbola)
So, $b^{2}=1+r, a^{2}=1-r$
$\Rightarrow e=\sqrt{1+\frac{1-r}{r+1}} \quad\left(\because e=\sqrt{1+\frac{a^{2}}{b^{2}}}\right)$
$\Rightarrow e=\sqrt{\frac{2}{r+1}}$
Hence, only option (A) is correct

Let $S=\left\{(x, y) \in \mathbb{R}^{2}: \frac{y^{2}}{1+r}-\frac{x^{2}}{1-r}=1\right\}$ where $r \neq \pm 1$. Then S represents:

-

An ellipse whose eccentricity is $\sqrt{\frac{2}{r+1}}$, when $r>1$

B
An ellipse whose eccentricity is $\frac{1}{\sqrt{r+1}}$, when $r>1$

C
A hyperbola whose eccentricity is $\frac{2}{\sqrt{r+1}}$, when $0<r<1$

D
A hyperbola whose eccentricity is $\frac{2}{\sqrt{1-r}}$, when $0<r<1$

Alternative Definition of Hyperbola:
Hyperbola is the set of all points in a plane, the difference of whose distances from two fixed points (foci) in the plane is a constant (2a).

$$
\left|P F_{1}-P F_{2}\right|=2 a
$$

The locus of centre of a circle which touches externally two given circles is:

The locus of centre of a circle which touches externally two given circles is:

Solution:
Let there be two circles with centers C_{1} $\& C_{2}$ and radii $r_{1} \& r_{2}$ and let there be a third circle with centre C and radius r touch both the circles externally.

Now,
$C C_{1}=r+r_{1}$
$C C_{2}=r+r_{2}$
$\Rightarrow\left|C C_{2}-C C_{1}\right|=\left|r_{2}-r_{1}\right|$

i.e. The locus of C is a hyperbola

The locus of centre of a circle which touches externally two given circles is:

Rectangular Hyperbola:
If the length of transverse axis and conjugate axis of a hyperbola are equal, then it is called Rectangular/ Equilateral hyperbola.
$2 a=2 b \Rightarrow a=b$
Equation of a rectangular hyperbola in standard form is:

$$
\begin{aligned}
& \text { Horizontal: } x^{2}-y^{2}=a^{2} \\
& \text { Vertical: } x^{2}-y^{2}=-a^{2}
\end{aligned}
$$

Key Takeaways

Rectangular Hyperbola:
Equation of a rectangular hyperbola in standard form is:
Case 1:

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}}=1, e=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{1+\frac{a^{2}}{a^{2}}}=\sqrt{2}
$$

Case 2:

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}}=-1, e=\sqrt{1+\frac{a^{2}}{b}}=\sqrt{1+\frac{a^{2}}{a^{2}}}=\sqrt{2}
$$

Key Takeaways

Rectangular Hyperbola:
Eccentricity of a rectangular hyperbola is $\sqrt{2}$.
Proof:
$e=\sqrt{\frac{a^{2}+b^{2}}{a^{2}}}=\sqrt{\frac{a^{2}+a^{2}}{a^{2}}}=\sqrt{2} \quad \therefore a=b$

Foci of the hyperbola and its conjugate hyperbola are concyclic and form a square.

$$
a e_{1}=a \sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{a^{2}+b^{2}}
$$

Similarly,

$$
b e_{2}=b \sqrt{1+\frac{a^{2}}{b^{2}}}=\sqrt{a^{2}+b^{2}}
$$

Diagonals of a square bisect each other at 90°
$F_{1} F_{2}$ and $F_{1}^{\prime \prime} F_{2}^{\prime \prime}$ are the diagonals.

Taking 0 as a center we can draw a circle with radius $O F_{1}=O F_{1}^{\prime}$ and passing through four points which is the focus.

Key Takeaways
Axes of Hyperbola Parallel to co-ordinate axes

Eccentricity remains same for both these hyperbola.
Similar procedure can be followed for vertical hyperbola.

Find the center of the hyperbola $4 x^{2}-9 y^{2}+32 x+54 y-53=0$:

A	$(-4,4)$
B	$(1,2)$

C)	$(-4,3)$
D	$(-3,4)$

Find the center of the hyperbola $4 x^{2}-9 y^{2}+32 x+54 y-53=0$:
Solution:
The standard form: $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$
Thus, $4 x^{2}-9 y^{2}+32 x+54 y-53=0$:

$$
4\left(x^{2}+8 x\right)-9\left(y^{2}-6 y\right)-53=0
$$

$$
4\left[(x+4)^{2}-16\right]-9\left[(y-3)^{2}-9\right]-53=0
$$

$$
4(x+4)^{2}-9(y-3)^{2}=36
$$

$$
\frac{(x+4)^{2}}{3^{2}}-\frac{(y-3)^{2}}{2^{2}}=1 \quad \therefore \text { Centre }=(-4,3)
$$

Key Takeaways

Equation of a Hyperbola referred to two Perpendicular Lines as axes:

Equation of hyperbola:

$$
\frac{\left(\frac{a_{1} x+b_{1} y+c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}}}\right)^{2}}{a^{2}}-\frac{\left(\frac{b_{1} x-a_{1} y+c_{2}}{\sqrt{b_{1}^{2}+a_{1}^{2}}}\right)^{2}}{b^{2}}=1
$$

Suppose, if conjugate axis is $a_{1} x+b_{1} y+c_{1}=0$: L_{1} and transverse axis is $b_{1} x-a_{1} y+c_{2}=0: L_{2}$

$$
e=\sqrt{\frac{a^{2}+b^{2}}{a^{2}}}
$$

Centre of the hyperbola is the point of intersection of the lines $L_{1}=0$ and $L_{2}=0$

Session 08

Auxiliary Circle and Director
Circle of Hyperbola

Let $a>0, b>0$. Let e and I respectively be the eccentricity and length of the latus rectum of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. Let e^{\prime} and l^{\prime} respectively be the eccentricity and length of the latus rectum of its conjugate hyperbola. If $e^{2}=\frac{11}{14} l$ and $\left(e^{\prime}\right)^{2}=\frac{11}{8} l^{\prime}$, then the value of $77 a+44 b$ is equal to :

Let $a>0, b>0$. Let e and I respectively be the eccentricity and length of the latus rectum of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. Let e^{\prime} and l^{\prime} respectively be the eccentricity and length of the latus rectum of its conjugate hyperbola. If $e^{2}=\frac{11}{14} l$ and $\left(e^{\prime}\right)^{2}=\frac{11}{8} l^{\prime}$, then the value of $77 a+44 b$ is equal to :

Solution:
$H: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then
$e^{2}=\frac{11}{14} l, \quad(l$ be the length of LR)
$\Rightarrow a^{2}+b^{2}=\left(\frac{11}{14}\right)\left(\frac{2 b^{2}}{a}\right) a^{2}$
$\Rightarrow a^{2}+b^{2}=\frac{11}{7} b^{2} a \ldots(i)$
And $\left(e^{\prime}\right)^{2}=\frac{11}{8} l^{\prime}$
(l^{\prime} be the length of $L R$ of conjugate hyperbola)
$\Rightarrow a^{2}+b^{2}=\frac{11}{4} a^{2} b$

By (i) and (ii)

$$
7 a=4 b
$$

Then by (i)
$\frac{16}{49} b^{2}+b^{2}=\frac{11}{7} b^{2} \cdot \frac{4 b}{7}$
$\Rightarrow 44 b=65$ and $77 a=65$
$\Rightarrow 77 a+44 b=130$

Let $a>0, b>0$. Let e and I respectively be the eccentricity and length of the latus rectum of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. Let e^{\prime} and l^{\prime} respectively be the eccentricity and length of the latus rectum of its conjugate hyperbola. If $e^{2}=\frac{11}{14} l$ and $\left(e^{\prime}\right)^{2}=\frac{11}{8} l^{\prime}$, then the value of $77 a+44 b$ is equal to :

Key Takeaways

Auxiliary Circle:

The circle described on the transverse axis as diameter is called the Auxiliary Circle of the given hyperbola.

1) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

Equation of auxiliary circle

$$
x^{2}+y^{2}=a^{2}
$$

Key Takeaways

Auxiliary Circle:
2) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$

Equation of auxiliary circle

$$
x^{2}+y^{2}=b^{2}
$$

Parametric Equations:
Consider the hyperbola: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Auxiliary circle: $x^{2}+y^{2}=a^{2}$
Let $P(x, y)$ be a point on Hyperbola
$P Q \perp x$-axis

$Q P^{\prime}$ is called tangent from Q to Auxiliary circle.
Auxiliary circle: $x^{2}+y^{2}=a^{2}$
So, Equation of tangent at P^{\prime} is $x x_{1}+y y_{1}=a^{2}$

Key Takeaways

Parametric Equations:
$=x(a \cos \theta)+y(\mathrm{~b} \sin \theta)=a^{2}$

Tangent is cutting X-axis at Q

Let $\theta \equiv \angle P^{\prime} O Q$ where $\theta \in[0,2 \pi)-\left\{\frac{\pi}{2}, \frac{3 \pi}{2}\right\}$
In $\triangle P^{\prime} O Q, \cos \theta=\frac{a}{O Q} \Rightarrow O Q=a \sec \theta$

$\therefore Q \equiv(a \sec \theta, 0)$

O Key Takeaways

Parametric Equations:
$\therefore Q \equiv(a \sec \theta, 0)$
Hence, Substituting the value in the hyperbola
$P \equiv(a \sec \theta, b \tan \theta)$ Parametric point

$$
P^{\prime} \equiv(a \cos \theta, a \sin \theta)
$$

P and P^{\prime} are called corresponding points.
$x=a \sec \theta, y=b \tan \theta$ are the parametric
equations of the hyperbola $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(1)

Parametric Equations:

For Hyperbola, $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$,
Parametric equation:
$x=a \tan \theta, y=b \sec \theta$

? The locus of the centroid of the triangle formed by any point P on the hyperbola $16 x^{2}-9 y^{2}+32 x+36 y-164=0$, and its foci is

$$
16 x^{2}-9 y^{2}+32 x+36 y-36=0
$$

B

$$
9 x^{2}-16 y^{2}+36 x+32 y-144=0
$$

$$
9 x^{2}-16 y^{2}+36 x+32 y-36=0
$$

D

$$
16 x^{2}-9 y^{2}+32 x+36 y-144=0
$$

The locus of the centroid of the triangle formed by any point P on the hyperbola $16 x^{2}-9 y^{2}+32 x+36 y-164=0$, and its foci is

Solution:
$H \equiv 16\left(x^{2}+2 x+1\right)-9\left(y^{2}-4 y+4\right)=144$
$\equiv \frac{(x+1)^{2}}{9}-\frac{(y-2)^{2}}{16}=1$
$e=\sqrt{1+\frac{16}{9}}=\frac{5}{3}$
Foci $(\pm a e-1,2)=(\pm 5-1,2)$
Foci are $(4,2)$ and $(-6,2)$
Let a general point be $P(-1+3 \sec \theta, 2+4 \tan \theta)$
Let centroid be (h, k)
$h=\frac{4-6-1+3 \sec \theta}{3}, k=\frac{2+2+2+4 \tan \theta}{3}$
$\Rightarrow h=-1+\sec \theta$ and $3 k=6+4 \tan \theta$
$\Rightarrow \sec \theta=(h+1)$ and $\frac{3}{4}(k-2)=\tan \theta$
Now, $\sec ^{2} \theta-\tan ^{2} \theta=1$
$\Rightarrow 16(h+1)^{2}-9(k-2)^{2}=16$
$\Rightarrow 16 x^{2}-9 y^{2}+32 x+36 y-36=0$

The locus of the centroid of the triangle formed by any point P on the hyperbola $16 x^{2}-9 y^{2}+32 x+36 y-164=0$, and its foci is

$$
16 x^{2}-9 y^{2}+32 x+36 y-36=0
$$

B

$$
9 x^{2}-16 y^{2}+36 x+32 y-144=0
$$

$$
9 x^{2}-16 y^{2}+36 x+32 y-36=0
$$

$$
16 x^{2}-9 y^{2}+32 x+36 y-144=0
$$

Let $P \equiv\left(x_{1}, y_{1}\right)$ be any point in the plane of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
$S: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-1$
$S_{1}: \frac{x_{1}^{2}}{a^{2}}-\frac{y_{1}^{2}}{b^{2}}-1$
If $S_{1}>0 \rightarrow$ Point lies inside
If $S_{1}<0 \rightarrow$ Point lies outside
If $S_{1}=0 \rightarrow$ Point lies on the Hyperbola

To justify above conditions, we can substitute the foci and center in S_{1}.

A Line and A Hyperbola:

A line can intersect Hyperbola at not more than 2 points as when we solve equation of line (linear) with the equation of hyperbola (2nd ${ }^{\text {nd }}$ degree), we get a Quadratic Equation, which has at most 2 distinct real roots.

A Line and A Hyperbola:

A line cannot be tangent to both the branches of the hyperbola simultaneously as either point P or P^{\prime} corresponds to two real and repeated roots of the quadratic equation.

K Key Takeaways

Position of a Line:
Consider a line $L: y=m x+c$ and a hyperbola : $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Solving line and hyperbola we get :
$\left(b^{2}-a^{2} m^{2}\right) x^{2}-2 a^{2} c m x-\left(a^{2} c^{2}+a^{2} b^{2}\right)=0$

Discriminant of the above equation is :

$$
D=4 a^{2} b^{2}\left(c^{2}+b^{2}-a^{2} m^{2}\right)
$$

Position of a Line:
Case (i) : L meets the hyperbola at two distinct points

If line L meets the hyperbola at two distinct points, then equation has two distinct real roots.

$$
\therefore D>0 \text { or } c^{2}>a^{2} m^{2}-b^{2}
$$

Key Takeaways

Position of a Line:
Case (ii) : L touches the hyperbola at one point

Hence, equation of the Line: $y=m x \pm \sqrt{a^{2} m^{2}-b^{2}}$ We are obtaining 2 equations with same slope as tangents to the hyperbola.

If line L touches the hyperbola at one point,
then equation has two equal roots.

$$
\therefore D=0 \text { or } c^{2}=a^{2} m^{2}-b^{2}
$$

Position of a Line:
Case (iii) : L doesn't meet the hyperbola

If line L doesn't meet the hyperbola, then equation has imaginary roots.

$$
\therefore D<0 \text { or } c^{2}<a^{2} m^{2}-b^{2}
$$

Point Form:

Equation of tangent to a hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
at a point $P\left(x_{1}, y_{1}\right)$ is $T=0$

$$
\Rightarrow \frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}-1=0
$$

(1)

Equation of Tangent:

Point Form:

Equation of tangent to a hyperbola $S: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ at a point $P\left(x_{1}, y_{1}\right)$ is given by

$$
\Rightarrow \frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=-1
$$

Parametric Form:
Equation of tangent to a hyperbola $S: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-1=0$
at a point $P(\theta) \equiv(a \sec \theta, b \tan \theta)$ is

$$
\frac{x}{a} \sec \theta-\frac{y}{b} \tan \theta-1=0
$$

Equation of Tangent:

Parametric Form:
Equation of tangent to a hyperbola $S: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+1=0$ at a point $P(\theta) \equiv(a \tan \theta, b \sec \theta)$ is

$$
\frac{x}{a} \tan \theta-\frac{y}{b} \sec \theta+1=0
$$

Equation of Tangent:

Slope Form:

Equation of tangent to a hyperbola $S: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-1=0$ having slope m is

$$
y=m x \pm \sqrt{a^{2} m^{2}-b^{2}}
$$

Point of contact of the tangent is $\left(-\frac{a^{2} m}{c},-\frac{b^{2}}{c}\right)$ where $c= \pm \sqrt{a^{2} m^{2}-b^{2}}$
(i) NOTE:
$y=m x+c$ will be tangent to $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$
if $c^{2}=b^{2}-a^{2} m^{2}$.

A pair of tangents are drawn from the point $(4,3)$ to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$. Let θ be the acute angle between them. Which of the following is/are true?

A

$$
\tan \theta=\frac{4}{3}
$$

A pair of tangents are drawn from the point $(4,3)$ to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$. Let θ be the acute angle between them. Which of the following is/are true?

Solution:

Let $P \equiv(4,3)$
$S: \frac{x^{2}}{16}-\frac{y^{2}}{9}-1 \Rightarrow a^{2}=16, b^{2}=9$
$S_{P}=\frac{4^{2}}{16}-\frac{3^{2}}{9}-1=-1<0$
Hence P is the exterior point.
By observation, tangent through $P(4,3)$
 passes through the vertex $A(4,0)$.
\therefore One tangent is vertical.
Equation of tangent : $y=m x \pm \sqrt{a^{2} m^{2}-b^{2}}$
Equation of tangent at $P: 3=4 m \pm \sqrt{16 m^{2}-9}$

A pair of tangents are drawn from the point $(4,3)$ to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$. Let θ be the acute angle between them. Which of the following is/are true?

Solution:

$$
\begin{aligned}
& \Rightarrow(3-4 m)^{2}=16 m^{2}-9 \\
& \Rightarrow 9+16 m^{2}-24 m=16 m^{2}-9 \\
& \Rightarrow m=\frac{18}{24}=\frac{3}{4}
\end{aligned}
$$

\therefore Equation of other tangent is $3 x-4 y=0$
Let α be the inclination of the tangent
 with x-axis.
$\Rightarrow \tan \alpha=\frac{3}{4}$
\therefore The acute angle between tangents,

$$
\theta=180-(90+\alpha)
$$

\triangleright
A pair of tangents are drawn from the point $(4,3)$ to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$. Let θ be the acute angle between them. Which of the following is/are true?

Solution:

$$
\begin{aligned}
& \tan \theta=\tan (90-\alpha) \\
& \tan \theta=\cot \alpha \\
& \tan \theta=\frac{4}{3}
\end{aligned}
$$

Let a line L_{1} be tangent to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{4}=1$ and let L_{2} be the line passing through the origin and perpendicular to L_{1}. If the locus of the point of intersection of L_{1} and L_{2} is $\left(x^{2}+y^{2}\right)^{2}=\alpha x^{2}+\beta y^{2}$, then $\alpha+\beta$ is equal to

Solution:

Equation of L_{1} is: $\frac{x \sec \theta}{4}-\frac{y \tan \theta}{2}=1 \ldots$ (i)
Equation of L_{2} is: $\frac{x \tan \theta}{2}+\frac{y \sec \theta}{4}=0 \ldots$
Required point of intersection of L_{1} and L_{2} is $\left(x_{1}, y_{1}\right)$ then,
$\frac{x_{1} \sec \theta}{4}-\frac{y_{1} \tan \theta}{2}-1=0 \ldots$ (iii)

And $\frac{x_{1} \tan \theta}{2}+\frac{y_{1} \sec \theta}{4}=0 \ldots$ (iv)
From equation (iii) and (iv)
$\sec \theta=\frac{4 x_{1}}{x_{1}^{2}+y_{1}^{2}}$ and $\tan \theta=-\frac{2 y_{1}}{x_{1}^{2}+y_{1}^{2}}$

Required locus of $\left(x_{1}, y_{1}\right)$ is:
$\left(x^{2}+y^{2}\right)^{2}=\alpha x^{2}+\beta y^{2}$
$\therefore \alpha=16$ and $\beta=-4$
Thus, $\alpha+\beta=12$
$?$ The locus of the midpoint of the chord of the circle, $x^{2}+y^{2}=25$ which is tangent to the hyperbola, $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ is:

$$
\left(x^{2}+y^{2}\right)^{2}-16 x^{2}+9 y^{2}=0
$$

B

$$
\left(x^{2}+y^{2}\right)^{2}-9 x^{2}+144 y^{2}=0
$$

$$
\left(x^{2}+y^{2}\right)^{2}-9 x^{2}-16 y^{2}=0
$$

$$
\left(x^{2}+y^{2}\right)^{2}-9 x^{2}+16 y^{2}=0
$$

The locus of the midpoint of the chord of the circle, $x^{2}+y^{2}=25$
which is tangent to the hyperbola, $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ is:
Solution:
Tangent to the hyperbola: $y=m x+\sqrt{9 m^{2}-16} \ldots$.. i)
Which is a chord of the circle with mid-point (h, k)
So, equation of chord, $T=S_{1}$
$h x+k y=h^{2}+k^{2}$
$\Rightarrow y=-\frac{h x}{k}+\frac{h^{2}+k^{2}}{k} \ldots$ (ii)
By (i) and (ii)
$m=-\frac{h}{k}$ and $\sqrt{9 m^{2}-16}=\frac{h^{2}+k^{2}}{k}$
$\Rightarrow 9 \frac{h^{2}}{k^{2}}-16=\frac{\left(h^{2}+k^{2}\right)^{2}}{k^{2}}$
\therefore Locus is: $9 x^{2}-16 y^{2}=\left(x^{2}+y^{2}\right)^{2}$

The locus of the midpoint of the chord of the circle, $x^{2}+y^{2}=25$ which is tangent to the hyperbola, $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ is:

$$
\left(x^{2}+y^{2}\right)^{2}-16 x^{2}+9 y^{2}=0
$$

B

$$
\left(x^{2}+y^{2}\right)^{2}-9 x^{2}+144 y^{2}=0
$$

$$
\left(x^{2}+y^{2}\right)^{2}-9 x^{2}-16 y^{2}=0
$$

D

$$
\left(x^{2}+y^{2}\right)^{2}-9 x^{2}+16 y^{2}=0
$$

A line parallel to the straight line $2 x-y=0$ is tangent to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{2}=1$ at the point $\left(x_{1}, y_{1}\right)$. Then $x_{1}^{2}+5 y_{1}^{2}$ is equal to :

A line parallel to the straight line $2 x-y=0$ is tangent to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{2}=1$ at the point $\left(x_{1}, y_{1}\right)$. Then $x_{1}^{2}+5 y_{1}^{2}$ is equal to :

Solution:
$T: \frac{x x_{1}}{4}-\frac{y y_{1}}{2}=1 \ldots(i)$
$t: 2 x-y=0$ is parallel to T
$\Rightarrow T: 2 x-y=\lambda \ldots(i i)$
Now, comparing the slopes, $x_{1}=4 y_{1}$
$\left(x_{1}, y_{1}\right)$ lies on the hyperbola
$\Rightarrow 4 y_{1}^{2}-\frac{y_{1}^{2}}{2}=1$
$\Rightarrow 7 y_{1}^{2}=2$

Now, $x_{1}^{2}+5 y_{1}^{2}=21 y_{1}^{2}=6$

Director Circle:

Locus of the point of intersection of perpendicular tangents to a hyperbola is a circle concentric with the hyperbola which is called Director Circle.

For hyperbola $S: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Director Circle: $x^{2}+y^{2}=a^{2}-b^{2}$ $(x-0)^{2}+(y-0)^{2}=\left(\sqrt{a^{2}-b^{2}}\right)^{2}$

Director Circle of the hyperbola is concentric with the hyperbola.

Director Circle:

Equation of tangent to hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$y=m x \pm \sqrt{a^{2} m^{2}-b^{2}}$
$y^{2}+m^{2} x^{2}-2 m x y=a^{2} m^{2}-b^{2}$
passing through $P(h, k)$
$m^{2}\left(h^{2}-a^{2}\right)-2 m h k+k^{2}+b^{2}=0$

$$
\left(m_{1}, m_{2}\right)
$$

For director circle $m_{1} \cdot m_{2}=-1$

Director Circle:

For director circle $m_{1} \cdot m_{2}=-1$
$\Rightarrow \frac{k^{2}+b^{2}}{h^{2}-a^{2}}=-1$
$(h, k) \rightarrow(x, y)$
$\Rightarrow y^{2}+b^{2}=a^{2}-x^{2}$
$\Rightarrow x^{2}+y^{2}=a^{2}-b^{2}$
CENTER $(0,0) \& r=\sqrt{a^{2}-b^{2}}$

Note:
For Director Circle $r=\sqrt{a^{2}-b^{2}}$
If $a^{2}>b^{2}$ real circle
$a^{2}=b^{2}$ point circle
$a^{2}<b^{2}$ imaginary circle

Note:

Equation of Director Circle for the hyperbola
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ is $x^{2}+y^{2}=b^{2}-a^{2}$
$b>a \rightarrow$ Real Circle
$b=a \rightarrow$ Point Circle
$b<a \rightarrow$ Imaginary Circle

Note:
Equation of Director Circle of $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$ is $(x-h)^{2}+(y-k)^{2}=a^{2}-b^{2}$

Session 09

Asymptotes and Geometrical
Properties of Hyperbola

If the pair of tangents drawn from an external point $P\left(x_{1}, y_{1}\right)$ to the hyperbola $S=0$ touch it at the points A and B, then $A B$ is called Chord Of Contact.

Equation of $A B$ is $T=0$
Point of intersection of the tangents $A(\alpha), B(\beta)$ on the hyperbola $S=0$ is

$$
\left(\frac{a \cos \left(\frac{\alpha-\beta}{2}\right)}{\cos \left(\frac{\alpha+\beta}{2}\right)}, \frac{b \sin \left(\frac{\alpha+\beta}{2}\right)}{\cos \left(\frac{\alpha+\beta}{2}\right)}\right)
$$

(1)

The equation of a chord of the hyperbola
$S=0$ whose mid point is $P\left(x_{1}, y_{1}\right)$ is $T=S_{1}$

Where:

$$
\begin{aligned}
& S=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-1 \\
& S_{1}=\frac{x_{1}^{2}}{a^{2}}-\frac{y_{1}^{2}}{b^{2}}-1 \\
& T=\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}-1
\end{aligned}
$$

 hyperbola $x^{2}-y^{2}=4$, which touch the parabola $y^{2}=8 x$, is:

$$
y^{2}(x-2)=x^{3}
$$

B

$$
y^{3}(x-2)=x^{2}
$$

$$
x^{3}(x-2)=y^{2}
$$

$$
x^{2}(x-2)=y^{3}
$$

The locus of the mid points of the chords of the hyperbola $x^{2}-y^{2}=4$, which touch the parabola $y^{2}=8 x$, is:

Solution:
Let the mid point of chord of hyperbola, $x^{2}-y^{2}=4$ be $\left(x_{1}, y_{1}\right)$
\therefore Equation of chord is : $x x_{1}-y y_{1}-4=x_{1}^{2}-y_{1}^{2}-4$
$\therefore \mathrm{y}=\frac{x_{1}}{y_{1}} x+\frac{y_{1}^{2}-x_{1}^{2}}{y_{1}}$
\because Equation (i) is tangent to parabola $y^{2}=8 x$, then

$$
\begin{aligned}
& \frac{y_{1}^{2}-x_{1}^{2}}{y_{1}}=\frac{2}{\frac{x_{1}}{y_{1}}} \\
& \Rightarrow\left(y_{1}^{2}-x_{1}^{2}\right) x_{1}=2 y_{1}^{2} \\
& \Rightarrow y_{1}^{2}\left(x_{1}-2\right)=x_{1}^{3}
\end{aligned}
$$

Thus, the required locus is: $y^{2}(x-2)=x^{3}$

The locus of the mid points of the chords of the hyperbola $x^{2}-y^{2}=4$, which touch the parabola $y^{2}=8 x$, is:

A $y^{2}(x-2)=x^{3}$

$$
y^{3}(x-2)=x^{2}
$$

$$
x^{3}(x-2)=y^{2}
$$

$$
x^{2}(x-2)=y^{3}
$$

Key Takeaways

Point Form:
Equation of normal to the hyperbola $S=0$ at $P\left(x_{1}, y_{1}\right)$ is

$$
\Rightarrow \frac{a^{2} x}{x_{1}}+\frac{b^{2} y}{y_{1}}=a^{2}+b^{2}
$$

Key Takeaways

Parametric Form:
Equation of normal to the hyperbola $S=0$ at $P(\theta)$ is

$$
\Rightarrow \frac{a x}{\sec \theta}+\frac{b y}{\tan \theta}=a^{2}+b^{2}
$$

Key Takeaways

Slope Form:

Equation of normal to the hyperbola $S=0$ whose slope is m is:

$$
\Rightarrow y=m x \pm \frac{\left(a^{2}+b^{2}\right) m}{\sqrt{a^{2}-b^{2} m^{2}}}, \text { where } m \in\left[\frac{-a}{b}, \frac{a}{b}\right]
$$

? Let $P(3,3)$ be a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If the normal to it at P intersects the x-axis at $(9,0)$ and e is its eccentricity, then the ordered pair $\left(a^{2}, e^{2}\right)$ is equal to
$(9,3)$

Let $P(3,3)$ be a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If the normal to it at P intersects the x-axis at $(9,0)$ and e is its eccentricity, then the ordered pair $\left(a^{2}, e^{2}\right)$ is equal to

JEE Main 2020
Solution:
Given : Hyperbola : $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Point $P \equiv(3,3)$ lies on it
$\Rightarrow \frac{9}{a^{2}}-\frac{9}{b^{2}}=1 \cdots(i)$
Equation of normal at P :

$$
\begin{aligned}
& \frac{a^{2} x}{x_{1}}+\frac{b^{2} y}{y_{1}}=a^{2}+b^{2} \\
& \Rightarrow \frac{a^{2} x}{3}+\frac{b^{2} y}{3}=a^{2} e^{2} \quad\left(\because e^{2}=\frac{a^{2}+b^{2}}{a^{2}}\right)
\end{aligned}
$$

Let $P(3,3)$ be a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If the normal to it at P intersects the x-axis at $(9,0)$ and e is its eccentricity, then the ordered pair $\left(a^{2}, e^{2}\right)$ is equal to

JEE Main 2020

Solution:

Above normal intersects the x-axis at $(9,0)$
$\therefore \frac{a^{2}(9)}{3}+0=a^{2} e^{2}$
$\Rightarrow e^{2}=3$
Now, $e^{2}=\frac{a^{2}+b^{2}}{a^{2}} \Rightarrow 3=1+\frac{b^{2}}{a^{2}}$
$\Rightarrow b^{2}=2 a^{2} \cdots(i i)$
Substitute in (i),
$\frac{9}{a^{2}}-\frac{9}{2 a^{2}}=1$
$\Rightarrow a^{2}=\frac{9}{2}$

$$
\therefore\left(a^{2}, e^{2}\right) \equiv\left(\frac{9}{2}, 3\right)
$$

Let $P(3,3)$ be a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If the normal to it at P intersects the x-axis at $(9,0)$ and e is its eccentricity, then the ordered pair $\left(a^{2}, e^{2}\right)$ is equal to

A
$(9,3)$

C
$\left(\frac{9}{2}, 3\right)$

If the distance between hyperbola and a line tends to zero when a one or both of x and y coordinates approach to infinity, then that line is called 'Asymptote' to the hyperbola.

Asymptote is tangent to hyperbola at infinity.

@

Note:
Asymptotes always pass through the center of hyperbola.

Transverse and the conjugate axes act as angle bisectors of the angle between the asymptotes.

$i)$ If θ is the acute angle between asymptote.

$$
\begin{aligned}
& m_{1}=\frac{b}{a}, m_{2}=-\frac{b}{a} \\
& \tan \theta=\left|\frac{\frac{b}{a}+\frac{b}{a}}{1-\frac{b^{2}}{a^{2}}}\right|=\left|\frac{2 a b}{a^{2}-b^{2}}\right| \quad \tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& \tan \frac{\theta}{2}=\frac{b}{a} \\
& \Rightarrow \theta=2 \tan ^{-1} \frac{b}{a} \\
& \text { Also, } \frac{b}{a}=\sqrt{e^{2}-1}=\tan \frac{\theta}{2} \\
& e^{2}=1+\tan ^{2} \frac{\theta}{2} \Rightarrow e=\sec \frac{\theta}{2}
\end{aligned}
$$

ii) A hyperbola and its conjugate have the same asymptotes.
$H: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-1=0$
A: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0$
$C: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+1=0$

NOTE:

Hyperbola, pair of asymptotes and conjugate
 hyperbola differ by a constant with $\mathrm{H}+\mathrm{C}=2 \mathrm{~A}$

If $H: a x^{2}+b y^{2}+2 h x y+2 g x+2 f y+c=0$
then $A: a x^{2}+b y^{2}+2 h x y+2 g x+2 f y+c+k=0$ ($\triangle=0$ for straight line)
iii) For a rectangular hyperbola $x^{2}-y^{2}=a^{2}$, equation of asymptotes is $y= \pm x$ which are at right angles.

Find the equation of the asymptotes of the hyperbola $x y-3 y-2 x=0$.

Solution:
Given hyperbola : $x y-3 y-2 x=0$
Combined equation of pair of asymptotes is $x y-3 y-2 x+\lambda=0$ (represents a pair of lines)
$\Rightarrow a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$
$\Rightarrow 0+\frac{3}{2}-0-0-\frac{\lambda}{4}=0$
$\Rightarrow \lambda=6$$\quad\left[\begin{array}{l}a=0, b=0, c=\lambda \\ h=\frac{1}{2}, g=-1, f=-\frac{3}{2}\end{array}\right)$

Equation of pair of asymptotes is $x y-2 x-3 y+6=0$
$\Rightarrow x(y-2)-3(y-2)=0$
$\Rightarrow(x-3)(y-2)=0$
\therefore Equation of the asymptotes are $x-3=0$ and $y-2=0$

When the centre of any rectangular hyperbola is at the origin and its asymptotes coincide with the co-ordinate axes, its equation is $x y=c^{2}$.

(i) Terms related to Hyperbola : $x y=c^{2}$

(1)

Key Takeaways

Parametric Equation

$$
\begin{aligned}
& \text { For } x y=c^{2} \\
& x=c t, y=\frac{c}{t} \quad(t \neq 0)
\end{aligned}
$$

is the parametric form of equation.

Equation of Tangent : $x y=c^{2}$
For $x y=c^{2}$
Equation of tangent in point form is $T=0$.
Replace $x y \rightarrow \frac{x y_{1}+y x_{1}}{2}$
\therefore Equation of tangent becomes $x y_{1}+x_{1} y=2 c^{2}$
Slope of tangent is $-\frac{y_{1}}{x_{1}}$

Note :

- Slope of tangent is always negative.

K Key Takeaways

For $x y=c^{2}$
Equation of tangent $x y_{1}+x_{1} y=2 c^{2}$
x - intercept i.e., $O M=\frac{2 c^{2}}{y_{1}}$ and
$y-$ intercept i.e., $O N=\frac{2 c^{2}}{x_{1}}$
\therefore Area formed by the tangent w.r.t coordinate axes i.e., $\operatorname{Ar}(\triangle 0 M N)$

$=\frac{1}{2} \times \frac{2 c^{2}}{y_{1}} \times \frac{2 c^{2}}{x_{1}}=\frac{2 c^{2} \times 2 c^{2}}{2 c^{2}}=2 c^{2} s q$. units.

Note:

- Area formed by the tangent w.r.t coordinate axes is always constant.
? Let a line $L: 2 x+y=k, k>0$ be a tangent to the hyperbola $x^{2}-y^{2}=3$. If L is also a tangent to the parabola $y^{2}=\alpha x$, then α is equal to:

JEE Main 2021

A	-24
B	24
C	12
D	-12

Let a line $L: 2 x+y=k, k>0$ be a tangent to the hyperbola $x^{2}-y^{2}=3$. If L is also a tangent to the parabola $y^{2}=\alpha x$, then α is equal to:

Solution:

$x^{2}-y^{2}=3$ is a rectangular hyperbola.
Given line $L: 2 x+y=k, k>0$
$\Rightarrow L: y=-2 x+k$ is tangent to $x^{2}-y^{2}=3$
$\therefore k=\sqrt{12-3}=3$
$\Rightarrow L: y=-2 x+3$
$\because L=0$ is also tangent to $y^{2}=\alpha x$
$\therefore 3=\frac{\frac{\alpha}{4}}{-2} \Rightarrow \alpha=-24$

O Key Takeaways

Equation of Normal : $x y=c^{2}$
$x y=c^{2}$
$T: x y_{1}+y x_{1}=c^{2} ; \quad m_{T}=-\frac{y_{1}}{x_{1}}$
$\therefore m_{N}=\frac{x_{1}}{y_{1}}$
$N: y-y_{1}=\frac{x_{1}}{y_{1}}\left(x-x_{1}\right)$
$y y_{1}-y_{1}^{2}=x x_{1}-x_{1}^{2}$
\therefore Equation of normal in the point form is $x x_{1}-y y_{1}=x_{1}^{2}-y_{1}^{2}$

K Key Takeaways

Note :

$$
\begin{aligned}
& x y=c^{2} \\
& N: x x_{1}-y y_{1}=x_{1}^{2}-y_{1}^{2} \\
& \therefore m_{N}=\frac{x_{1}}{y_{1}} \longrightarrow x_{1}>0, y_{1}>0 \rightarrow+v e \\
& x_{1}<0, y_{1}<0 \rightarrow+v e
\end{aligned}
$$

- Slope of normal is always positive.

K Key Takeaways

Parametric Form :

$x y=c^{2}$
$T: x y_{1}+y x_{1}=c^{2} ; \quad m_{T}=-\frac{y_{1}}{x_{1}}$
$x_{1}=c t, y_{1}=\frac{c}{t}$
Differentiating $x y=c^{2}$ w.r.t x.
$y+x \frac{d y}{d x}=0$
$\therefore m_{T}=\left.\frac{d y}{d x}\right|_{P}=-\left.\frac{y}{x}\right|_{P}=-\frac{\frac{c}{t}}{c t}=-\frac{c}{t} \times \frac{1}{c t}=-\frac{1}{t^{2}}$

$\therefore m_{N}=t^{2}$

Length of Latus Rectum is $8 \sqrt{2}$

B

$$
\text { Tangent at }(2,8) \text { is } 2 x+y-12=0
$$

Chord with midpoint $(5,6)$ is $6 x+5 y=60$

Normal at $(4,3)$ is $4 x-3 y+7=0$

For the hyperbola $x y=16$, which of the following is/are true?

Solution:

Given: Rectangular Hyperbola $x y=16$

$$
\Rightarrow c^{2}=16
$$

(i) L.L.R. $=\frac{2 b^{2}}{a}$

$$
\begin{aligned}
& =2 a \quad(\because a=b) \\
& =2 \sqrt{2} c=8 \sqrt{2} \quad(\because a=\sqrt{2} c)
\end{aligned}
$$

(ii) Tangent at (2,8): $x y_{1}+y x_{1}=2 c^{2}$

$$
\begin{aligned}
& \Rightarrow 8 x+2 y=32 \\
& \Rightarrow 4 x+y=16
\end{aligned}
$$

For the hyperbola $x y=16$, which of the following is/are true?

Solution:

Given: Rectangular Hyperbola $x y=16$

$$
\Rightarrow c^{2}=16
$$

(iii) Chord with mid-point $(5,6): T=S_{1}$

$$
\begin{aligned}
& \Rightarrow \frac{x y_{1}+y x_{1}}{2}-c^{2}=x_{1} y_{1}-c^{2} \\
& \Rightarrow \frac{6 x+5 y}{2}-16=30-16 \\
& \Rightarrow 6 x+5 y=60
\end{aligned}
$$

(iv) Normal at (4,3): $x x_{1}-y y_{1}=x_{1}^{2}-y_{1}^{2}$

$$
\begin{aligned}
& \Rightarrow 4 x-3 y=7 \\
& \Rightarrow 4 x-3 y-7=0
\end{aligned}
$$

For the hyperbola $x y=16$, which of the following is/are true?

A

$$
\text { L.L.R is } 8 \sqrt{2}
$$

Tangent at $(2,8)$ is $2 x+y-12=0$

-

Chord with midpoint $(5,6)$ is $6 x+5 y=60$

Normal at $(4,3)$ is $4 x-3 y+7=0$
(i) If an incoming light ray passing through one focus S strike convex side of the hyperbola then it will get reflected towards other focus S^{\prime}.

(ii) If an ellipse and a hyperbola are confocal, then they intersect orthogonally.

Note:

Conversely, if ellipse and hyperbola intersect orthogonally, then they are confocal.

(iii) If PSQ is a focal chord of the
hyperbola $S=0$, then $\frac{1}{S P}+\frac{1}{S Q}=\frac{2 a}{b^{2}}$ or Semi latus rectum is the H.M. of $S P$ and $S Q$.
$\frac{b^{2}}{a}=$ Harmonic mean $($ PS \& QS)
$|P S|, \frac{b^{2}}{a},|Q S| \rightarrow$ H.P.

$$
\begin{aligned}
& \Rightarrow \frac{1}{|P S|}, \frac{a}{b^{2}}, \frac{1}{|Q S|} \rightarrow \text { A.P. } \\
& \Rightarrow 2\left(\frac{a}{b^{2}}\right)=\frac{1}{|P S|}+\frac{1}{|Q S|}
\end{aligned}
$$

(iv) Feet of perpendiculars from the foci upon any tangent to a hyperbola, lie on the auxiliary circle.

(v) Product of the lengths of perpendiculars from foci upon any tangent of a hyperbola, is equal to the square of the semi-conjugate axis.

(vi) The portion of the tangent to a hyperbola between the point of contact and the directrix subtends a right angle at the corresponding focus.

(vii) If a triangle has its vertices on a rectangular hyperbola, then its orthocentre also lies on the same hyperbola.

$$
H \equiv\left(-\frac{c}{t_{1} t_{2} t_{3}},-c t_{1} t_{2} t_{3}\right)
$$

Sum of length of perpendiculars drawn from foci to any real tangent to $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ is always greater than or equal to a, then find the value of ' a '.

Solution:

Property: Product of the lengths of perpendiculars from foci upon any tangent of a hyperbola, is equal to the square of the semi-conjugate axis.

$$
\begin{aligned}
& P_{1} \cdot P_{2}=b^{2} \\
& P_{1} \cdot P_{2}=9 \\
& A \cdot M . \geq G \cdot M . \\
& \frac{P_{1}+P_{2}}{2} \geq \sqrt{9} \\
& P_{1}+P_{2} \geq 6 \\
& \therefore a=6
\end{aligned}
$$

Thank

Return to Top

[^0]: co-ordinate axes

