

© 2022, Aakash BYJU'S. All rights reserved.

Key Takeaway

Endocrine system

2

Human endocrine system

Hypothalamus

4

Pituitary gland

Hormones

Pineal gland

Hypothyroidism

Hyperthyroidism

Parathyroid gland

Thymus

9

Adrenal glands

Pancreas

© 2022, Aakash BYJU'S. All rights reserved.

Glands

Exocrine glands

- They are glands with ducts.
- Glands that secrete substances onto some surface are known as exocrine glands.
- E.g.: Sweat and sebaceous glands

Endocrine glands

- They are ductless glands.
- Glands that secrete hormones into the bloodstream are endocrine gland.
- E.g.: Hypothalamus

Endocrine system

A system of endocrine glands along with hormone producing tissues or cells that are located in different parts of our body is referred to as endocrine system. **Endocrine system** is responsible for **growth and development in our body**.

Endocrine System

Hormones

- They are intercellular chemical messengers produced in response to a specific stimulus.
- They are non-nutrient chemicals transported to target cells.
- They are produced in trace amounts.

Human Endocrine System

 The major endocrine glands present in the human endocrine system are as follows:

Pituitary gland: Master gland

It is called so because, it directs the secretion of hormones of all the other glands in the body.

Hypothalamus: Master control center

Hypothalamus is called so because, it **controls** and **provides necessary inputs to the pituitary**.

Hypothalamus

Location

 Hypothalamus is present in the forebrain at the basal part of diencephalon.

Structure

- Hypothalamus contains neurosecretory cells.
 - These cells are also known as nuclei.

Hypothalamus

Hormones of hypothalamus

The hypothalamus produces hormones that **stimulate** or **inhibit** the hormone production in the anterior lobe of the pituitary gland.

Releasing hormone (RH)

(Stimulate anterior lobe secretion)

These hormones stimulate

the secretion of hormones from the anterior pituitary. E.g. - GNRH Inhibiting hormone (IH)

(Inhibit anterior lobe secretion)

These hormones inhibit the secretion of hormones from the anterior pituitary.

E.g. - Somatostatin

Hypothalamus

RH

Anterior
pituitary

Target gland

- The releasing and inhibiting hormones reach the pituitary gland through a portal circulatory system.
- The posterior pituitary is under the direct neural regulation of the hypothalamus.

Pituitary Gland

Location

- Pituitary gland is attached to the hypothalamus by a stalk.
- It is located inside a bony cavity known as sella turcica.

Structure

 Anatomically, pituitary is divided into:

Pituitary Gland

 It houses the axonal terminals of hypothalamic neurons.

They store and release hormones.

- It consists of two portions, pars distalis and pars intermedia.
- Pars distalis is also known as anterior pituitary.
- In humans, the pars intermedia is almost merged with pars distalis.

Anterior pituitary

Prolactin (PRL

Growth hormone (GH)

Luteinising hormone (LH

Follicle stimulating hormone (FSH

Thyroid stimulating hormone (TSH)

Adrenocorticotropic hormone (ACTH

Melanocyte stimulating hormone (MSH)

Posterior pituitary

It stores and secretes two hormones synthesised by the hypothalamus and transported axonally to neurohypophysis.

Oxytocin

- Acts on smooth muscles and **stimulate contraction**
- Stimulate vigorous contraction of uterus during childbirth
- Stimulate **milk ejection** from mammary glands

Vasopressir

- Also called antidiuretic hormone (ADH)
- Acts on kidneys and stimulate reabsorption of water and electrolytes by DCT
- Impairment affecting synthesis/release of ADH can cause diabetes insipidus which refers to diminished ability to conserve water

Anterior pituitary hormones

Growth hormone (GH)

- Growth hormone controls growth of the body.
- The release of growth hormone is controlled by hormones produced by the hypothalamus.
 - Growth hormone-releasing hormone (GHRH)
 - Somatostatin/Growth hormoneinhibiting hormone (GHIH)

Anterior pituitary hormones

Luteinising hormone (LH)

It is a gonadotropin (stimulates gonadal activity)

Role in males

- Stimulates the synthesis and secretion of hormones called androgens (testosterone) from testes
- Induces ovulation of fully mature follicles (Graafian follicles)

Role in females

 Maintains the corpus luteum, formed after ovulation

Follicle stimulating hormone (FSH)

It is a gonadotropin (stimulates gonadal activity)

Role in males

- FSH and androgens regulate spermatogenesis (process of origin and development of sperm cells).
- It stimulates
 growth and
 development
 of the ovarian
 follicles.

Role in females

Anterior pituitary hormones - LH & FSH regulation

LH and FSH production is controlled by the production of GnRH (gonadotropin-releasing hormone) and GnIH (gonadotropin-inhibiting hormone) from the hypothalamus.

Prolactin (PRL)

- It helps in the production of milk after childbirth.
- It regulates the growth of the mammary glands.
- The release of prolactin is controlled by the hypothalamus.

Thyroid stimulating hormone (TSH)

- It is triggered by the thyroid-releasing hormone of the hypothalamus.
- It stimulates the synthesis and secretion of thyroid hormones.

Melanocyte stimulating hormone (MSH)

 It acts on the melanocytes (melanin containing cells) and regulates pigmentation of the skin.

Adrenocorticotropic hormone (ACTH)

- It stimulates synthesis and secretion of steroid hormone called glucocorticoids.
- It also stimulates the production of cortisol.

Pineal Gland

Pineal Gland

- 'Pineal' is derived from the Latin word 'Pinea', which means pinecone
- Pea-sized gland
- Located on the dorsal side of the forebrain
- Secretes melatonin

Light inhibits the secretion of melatonin from the pineal gland.

Pineal Gland

Functions of melatonin

Body clock and pigmentation

- Human body maintains an internal clock that responds to outside cues like light and eating habits.
- This clock is regulated by melatonin.

Menstrual cycle

Melatonin
also **keeps**the duration
of the **menstrual**cycle regular.

Body defence

 Melatonin also enhances immunity. Metabolism and body temperature

Melatonin
 increases
 metabolism,
 which burns
 body fat.

Diurnal rhythm

- The 24-hour sleep-wake cycle is the circadian rhythm.
- The circadian rhythm synced with day and night is the diurnal rhythm.
- Melatonin maintains the diurnal rhythm.

• It is present in the neck, in front of the trachea, or the windpipe.

It is made up of follicles and stromal tissue.

Hormones produced by follicular cells

They are composed of tyrosine

Triiodothyronine (T₃) (3 iodine atoms)

Tetraiodothyronine or thyroxine (T_4)

Thyrocalcitonin

Hormones produced by C-cells

 Calcitonin promotes the removal of calcium ions from blood, so that the blood calcium levels fall.

 Calcitonin also promotes the deposition of calcium ions into bones.

Parathyroid Gland

- Location: Four parathyroid glands are present on the backside or dorsal side and two on each lobe of the thyroid gland.
- Function: These glands secrete parathyroid hormone, parathormone, or PTH.
- Chemical nature: PTH is polypeptide in nature.
- It is a **hypercalcemic** hormone. It raises blood Ca²⁺ in the blood.

Effect of situations on parathyroid hormone

When calcium levels are low in blood

- Acts on bones and stimulates resorption of Ca²⁺
- Also stimulates reabsorption of Ca²⁺ by the renal tubules and increases absorption from the digested food

When calcium levels are high in blood

- Production of parathyroid hormone is reduced
- Production of calcitonin increases

Thymus

- Location: It is located in the chest, behind the sternum, between the lungs, and on the ventral (front) side of the aorta.
- It is not only an endocrine gland, but also plays a very important role in the development of immune system.
- It secretes small peptide hormones known as thymosin.
- **Function**: A major role of the thymus is the differentiation of T-lymphocytes.
 - Hence, it is involved in cell-mediated immunity.
 - It is also involved in humoral immunity, as it produces antibodies, though to a lesser extent.
- It gradually reduces in size as a person grows older, resulting in a weaker immune system.

• **Location**: A pair of adrenal glands are located one above each kidney. They are also known as **suprarenal glands**.

Capsule

Zona glomerulosa (Outer zone) Secretes **mineralocorticoids**

Zona fasciculata (Middle zone) Secretes **glucocorticoids**

Zona reticularis (Inner zone) Secretes **gonadocorticoids**

Cortex

Adrenal cortex

Cholesterol

All the hormones of adrenal cortex are synthesized from cholesterol.

Corticoids

Glucocorticoids

- Primarily involved in carbohydrate metabolism
- Cortisol main and the most abundant glucocorticoid
- Other two corticoids are cortisone and corticosterone
- Known as a stress hormone, as it is released during stress
- Acts mainly on the cells of the liver

Mineralocorticoids

- Responsible for the regulation of water and electrolyte balance
- Aldosterone- principal and the most abundant mineralocorticoid
- Acts on the cells of the kidney

Gonadocorticoids

 Gonadocorticoids are also known as the sex hormones of adrenal glands

Adrenal cortex

Functions of glucocorticoids

Gluconeogenesis

 Conversion of non-carbohydrates (like glycerol or amino acids) to carbohydrates

Proteolysis

- Breakdown of proteins into amino acids in blood
- Inhibits cellular uptake & utilisation of amino acids

Lipolysis

 Breakdown of fats in adipose tissue to fatty acids in bloodstream

Anti-inflammatory and immunosuppressant

- Suppresses immune response (Production of antibodies)
- Mostly produced by cortisol
- Cortisol maintains cardiovascular and kidney functions
- Increases RBC production

Adrenal cortex

Functions of mineralocorticoids (Aldosterone)

Maintenance of body fluid volume, osmotic and blood pressure:

- Expulsion of K⁺ and phosphate ions
- Reabsorption of Na⁺ and water

• They also promote development of secondary sexual characters.

Adrenal medulla

Catecholamines/Emergency
hormone/ Fight or flight hormones

Norepinephrine/ Noradrenaline Epinephrine/ Adrenaline

- Secreted during stress and emergency situations
- Breakdown glycogen and increase blood sugar levels
- Act on cells of skeletal, cardiac and smooth muscles, blood vessels and fat cells.
- Increase alertness, pupillary dilation, piloerection, sweating, heart rate and breathing
- Stimulate the breakdown of lipids and proteins.

Pancreas

Structure of It lies in the bend of duodenum. pancreas It acts both as an **exocrine** and an endocrine gland. Pancreatic acini **Islets of Langerhans** 1-2% (Endocrine part) (Exocrine part) Hormones produced by **Islets of Langerhans** α cells β cells **Produce Produce insulin** glucagon

Pancreas

Hormonal impact

Hyperglycemia (Diabetes mellitus)

- Prolonged hyperglycemia leads to a complex disorder known as diabetes mellitus.
- It leads to a loss of glucose through urine and the formation of harmful compounds known as ketone bodies.
- In diabetes, the body begins to uptake fatty acids from the blood to provide energy.
- Treatment: Insulin therapy

Hypoglycemia

- It leads to a decrease in the blood glucose level below normal.
- Insulin acts mainly on hepatocytes and adipocytes (cells of adipose tissue), and enhances cellular glucose uptake and utilisation.
- This can lead to glucose shortage in blood.

Pancreas

Glucagon

- Acts mainly on the cells of the liver (hepatocytes).
- Stimulates glycogenolysis, (conversion of glycogen into glucose in the liver).
- Stimulates gluconeogenesis
 (formation of glucose from non-carbohydrate precursors).
- Glycogenolysis and gluconeogenesis increase the blood sugar level, known as hyperglycemia.
- Hyperglycemic hormone

Insulin

- Stimulates glycogenesis, which is the conversion of glucose into glycogen.
- Insulin enhances the rapid movement of glucose from blood into hepatocytes and adipocytes.
- Decreases the blood glucose level, known as hypoglycemia.
- Hypoglycemic hormone

Testes

- A pair of testes are present in the scrotal sacs outside the abdominal cavity of males.
- It performs dual functions as the primary sex organ as well as an endocrine gland.

Structure of testes

Seminiferous tubules

- Seminiferous tubules contain epithelium consisting of sertoli cells and spermatogonia.
- Sertoli cells nourish sperms and spermatogonia produce sperms.

Interstitial tissue

- The **Leydig cells** or interstitial cells are present in the interstitial/stromal tissue.
- Leydig cells are responsible for the synthesis of androgens (male sex hormones).

Testes

Role of androgens

- They play a **stimulatory role** in the process of **spermatogenesis** (production of sperms).
- They act on the central neural system and influence the male sexual behaviour (libido).
- They regulate protein and carbohydrate metabolism.
- They regulate the development, maturation, and functions of the male accessory sex organs like epididymis, vas deferens, seminal vesicles, prostate gland, urethra, etc.
- They promote growth of body tissues like bones and muscles.
- They play a vital role in the development of secondary sexual characters.

Ovary

- Females have a pair of ovaries located in the pelvic cavity.
- It also has dual functions like the testes.
- Ovary is the primary female sex organ, which produces one mature ovum during each menstrual cycle.
- In addition to that, the ovary also acts as an endocrine gland and produces hormones.

 After ovulation (release of ovary), the ruptured graafian follicle is converted to a structure known as corpus luteum.

Ovary

- **Estradiol** is the principal estrogen.
- Functions of estrogen:
 - Stimulates development and maturation of growing ovarian follicles
 - Helps in **maturation of ova** in the ovaries
 - Controls female sexual behaviour
 - Helps in development of female secondary sexual characters
 - Stimulates mammary gland development

Functions of progesterone:

- Stimulates the development of uterine endometrium
- Acts on the mammary glands and stimulates the formation of alveoli and milk secretion
- Also secreted by the placenta during pregnancy

Hormones Secreted by Non-Endocrine Glands

- Hormones are secreted not only by endocrine glands.
- They are also produced by other organs such as the heart, kidney, and gastrointestinal tract.
- These organs have endocrine cells that secrete hormones.

Heart

hormone atrial natriuretic factor (ANF)

Causes dilation of blood vessels, thus reduces blood pressure

Kidney

Secretes peptide hormone **erythropoietin**

Stimulates erythropoiesis (production of RBCs)

Note: Several non-endocrine tissues secrete hormones called **growth factors**. These factors are essential for the normal growth of tissues and their **repairing/regeneration**.

Hormone Receptors

Hormones in our body act like **chemical messengers** that relay signals from the <u>endocrine glands and</u> deliver it to the target tissues by binding specifically to them.

Hormone

- Like a specific lock to the key, hormones have specific proteins called receptors.
- Hormones and receptors perfectly fit with each other.
- These receptors are present only on target cells.
- When the hormone binds to a receptor protein, it forms a hormone-receptor complex.
- This complex leads to certain biochemical changes in target tissue.

Hormone Receptors - Types

Intracellular receptors

Intracellular receptors are present inside membrane of the target cell.

Membrane receptors

Membrane receptors are present on the cell membrane of the target cell. Membrane receptors are also called **extracellular receptors**. These act as first messengers.

Hormone Receptors

Types of hormones based on interaction with receptors

Hormones which interact with membrane-bound receptors

- They generate second messengers (e.g., cyclic AMP, IP₃, Ca²⁺ etc) which in turn regulate cellular metabolism.
- They do not enter the target cell.
- E.g., protein hormones

Hormones which interact with intracellular receptors

- They mostly regulate gene expression or chromosome function by the interaction of hormone-receptor complex.
- They enter the target cell.
- E.g., steroid hormones

Endocrine system
(A system of endocrine glands along with hormone-producing tissues or cells)

Hypothalamus (Master control centre)

Pituitary gland (Master gland)

Pineal gland

Thyroid gland

Parathyroid gland

Thymus

Pancreas

Adrenal gland

Gonads- Testes and ovaries

© 2022, Aakash BYJU'S. All rights reserved.

Pineal gland

- Hormone: Melatonin
- Functions:
 - Maintains diurnal rhythm
 - Regulates body temperature, metabolism, menstrual cycle
 - Enhances immunity

Thyroid gland

- Thyroid hormones
 - T_3 and T_4
 - Calcitonin
- Thyroid disorders
 - Hypothyroidism
 - Hyperthyroidism

Parathyroid gland

Regulates blood calcium level by tackling deficiency of calcium in blood

Thymus gland

Thymus gland plays a vital role in our immune system as the T-lymphocytes mature and differentiate in it.

Mechanism of action for protein hormone

Mechanism of action for lipid hormone

